Displaying all 2 publications

Abstract:
Sort:
  1. Lloyd M, Reynolds D, Sheldon T, Stromberg K, Hudnall JH, Demmer WM, et al.
    Heart Rhythm, 2017 02;14(2):200-205.
    PMID: 27871854 DOI: 10.1016/j.hrthm.2016.11.016
    BACKGROUND: The Micra transcatheter pacemaker was designed to have similar functionality to conventional transvenous VVIR pacing systems. It provides rate adaptive pacing using a programmable 3-axis accelerometer designed to detect patient activity in the presence of cardiac motion.

    OBJECTIVE: The purpose of this study was to evaluate the system's performance during treadmill tests to maximum exertion in a subset of patients within the Micra Transcatheter Pacing Study.

    METHODS: Patients underwent treadmill testing at 3 or 6 months postimplant with algorithm programming at physician discretion. Normalized sensor rate (SenR) relative to the programmed upper sensor rate was modeled as a function of normalized workload in metabolic equivalents (METS) relative to maximum METS achieved during the test. A normalized METS and SenR were determined at the end of each 1-minute treadmill stage. The proportionality of SenR to workload was evaluated by comparing the slope from this relationship to the prospectively defined tolerance margin (0.65-1.35).

    RESULTS: A total of 69 treadmill tests were attempted by 42 patients at 3 and 6 months postimplant. Thirty tests from 20 patients who completed ≥4 stages with an average slope of 0.86 (90% confidence interval 0.77-0.96) confirmed proportionality to workload. On an individual test basis, 25 of 30 point estimates (83.3%) had a normalized slope within the defined tolerance range (range 0.46-1.08).

    CONCLUSION: Accelerometer-based rate adaptive pacing was proportional to workload, thus confirming rate adaptive pacing commensurate to workload is achievable with an entirely intracardiac pacing system.

  2. Reynolds D, Duray GZ, Omar R, Soejima K, Neuzil P, Zhang S, et al.
    N Engl J Med, 2016 Feb 11;374(6):533-41.
    PMID: 26551877 DOI: 10.1056/NEJMoa1511643
    BACKGROUND: A leadless intracardiac transcatheter pacing system has been designed to avoid the need for a pacemaker pocket and transvenous lead.
    METHODS: In a prospective multicenter study without controls, a transcatheter pacemaker was implanted in patients who had guideline-based indications for ventricular pacing. The analysis of the primary end points began when 300 patients reached 6 months of follow-up. The primary safety end point was freedom from system-related or procedure-related major complications. The primary efficacy end point was the percentage of patients with low and stable pacing capture thresholds at 6 months (≤2.0 V at a pulse width of 0.24 msec and an increase of ≤1.5 V from the time of implantation). The safety and efficacy end points were evaluated against performance goals (based on historical data) of 83% and 80%, respectively. We also performed a post hoc analysis in which the rates of major complications were compared with those in a control cohort of 2667 patients with transvenous pacemakers from six previously published studies.
    RESULTS: The device was successfully implanted in 719 of 725 patients (99.2%). The Kaplan-Meier estimate of the rate of the primary safety end point was 96.0% (95% confidence interval [CI], 93.9 to 97.3; P<0.001 for the comparison with the safety performance goal of 83%); there were 28 major complications in 25 of 725 patients, and no dislodgements. The rate of the primary efficacy end point was 98.3% (95% CI, 96.1 to 99.5; P<0.001 for the comparison with the efficacy performance goal of 80%) among 292 of 297 patients with paired 6-month data. Although there were 28 major complications in 25 patients, patients with transcatheter pacemakers had significantly fewer major complications than did the control patients (hazard ratio, 0.49; 95% CI, 0.33 to 0.75; P=0.001).
    CONCLUSIONS: In this historical comparison study, the transcatheter pacemaker met the prespecified safety and efficacy goals; it had a safety profile similar to that of a transvenous system while providing low and stable pacing thresholds. (Funded by Medtronic; Micra Transcatheter Pacing Study ClinicalTrials.gov number, NCT02004873.).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links