Cancer is the main cause of death worldwide, so the discovery of new and effective therapeutic agents must be urgently addressed. Diatoms are rich in minerals and secondary metabolites such as saturated and unsaturated fatty acids, esters, acyl lipids, sterols, proteins, and flavonoids. These bioactive compounds have been reported as potent anti-cancer, anti-oxidant and anti-bacterial agents. Diatoms are unicellular photosynthetic organisms, which are important in the biogeochemical circulation of silica, nitrogen, and carbon, attributable to their short growth-cycle and high yield. The biosilica of diatoms is potentially effective as a carrier for targeted drug delivery in cancer therapy due to its high surface area, nano-porosity, bio-compatibility, and bio-degradability. In vivo studies have shown no significant symptoms of tissue damage in animal models, suggesting the suitability of a diatoms-based system as a safe nanocarrier in nano-medicine applications. This review presents an overview of diatoms' microalgae possessing anti-cancer activities and the potential role of the diatoms and biosilica in the delivery of anticancer drugs. Diatoms-based antibodies and vitamin B12 as drug carriers are also elaborated.
Heavy metal pollution has become a major concern globally as it contaminates eco-system, water networks and as finely suspended particles in air. In this study, the effects of elevated silver nanoparticle (AgNPs) levels as a model system of heavy metals, in the presence of microalgal crude extracts (MCEs) at different ratios, were evaluated against the non-cancerous Vero cells, and the cancerous MCF-7 and 4T1 cells. The MCEs were developed from water (W) and ethanol (ETH) as green solvents. The AgNPs-MCEs-W at the 4:1 and 5:1 ratios (v/v) after 48 and 72 h treatment, respectively, showed the IC50 values of 83.17-95.49 and 70.79-91.20 μg/ml on Vero cells, 13.18-28.18 and 12.58-25.7 μg/ml on MCF-7; and 16.21-33.88 and 14.79-26.91 μg/ml on 4T1 cells. In comparison, the AgNPs-MCEs-ETH formulation achieved the IC50 values of 56.23-89.12 and 63.09-91.2 μg/ml on Vero cells, 10.47-19.95 and 13.48-26.61 μg/ml on MCF-7; 14.12-50.11 and 15.13-58.88 μg/ml on 4T1 cells, respectively. After 48 and 72 h treatment, the AgNPs-MCE-CHL at the 4:1 and 5:1 ratios exhibited the IC50 of 51.28-75.85 and 48.97-69.18 μg/ml on Vero cells, and higher cytotoxicity at 10.47-16.98 and 6.19-14.45 μg/ml against MCF-7 cells, and 15.84-31.62 and 12.58-24.54 μg/ml on 4T1 cells, respectively. The AgNPs-MCEs-W and ETH resulted in low apoptotic events in the Vero cells after 24 h, but very high early and late apoptotic events in the cancerous cells. The Liquid Chromatography-Mass Spectrometry-Electrospray Ionization (LC-MS-ESI) metabolite profiling of the MCEs exhibited 64 metabolites in negative ion and 56 metabolites in positive ion mode, belonging to different classes. The microalgal metabolites, principally the anti-oxidative components, could have reduced the toxicity of the AgNPs against Vero cells, whilst retaining the cytotoxicity against the cancerous cells.
Normal drugs exhibit activities against both normal and cancer cells. Furthermore, cancer cells may develop resistance to these drugs that alternative treatment must be explored. The main objective of this study was to examine the anticancer activity of Schiff base against Tongue Squamous Cell Carcinoma Fibroblasts (TSCCF) and normal human gingival fibroblasts (NHGF) and to propose its mechanism. A Novel Schiff base ligand was synthesized from the reaction of 5-C-2-4-NABA (5-chloro-2-((4-nitrobenzylidene) amino) benzoic acid). These Schiff bases possessed azomethine group (-HC=N-) and aromatic group (CH) as analyzed by Fourier transforms infrared (FTIR) spectroscopy and UV-Vis spectra. The in vitro cytotoxicity screening assay suggested promising activity against TSCCF with IC50 of 446.68 µg/mL, but insignificant activity against NHGF cells (IC50 of 977.24 µg/mL) after 72 h. The evidence of apoptotic induction was supported by DAPI staining of apoptotic nuclei with reduced cell numbers, suggesting that Schiff base could induce apoptotic bodies in cancer cells being observed. Based on the Schiff base structure, the anti-cancer mechanism may be attributed to the -HC=N- azomethine group. For the first time, our findings highlighted the anticancer activities of the new Schiff base against oral cancer cell lines.
With the development of communication technologies, the use of wireless systems in biomedical implanted devices has become very useful. Bio-implantable devices are electronic devices which are used for treatment and monitoring brain implants, pacemakers, cochlear implants, retinal implants and so on. The inductive coupling link is used to transmit power and data between the primary and secondary sides of the biomedical implanted system, in which efficient power amplifier is very much needed to ensure the best data transmission rates and low power losses. However, the efficiency of the implanted devices depends on the circuit design, controller, load variation, changes of radio frequency coil's mutual displacement and coupling coefficients. This paper provides a comprehensive survey on various power amplifier classes and their characteristics, efficiency and controller techniques that have been used in bio-implants. The automatic frequency controller used in biomedical implants such as gate drive switching control, closed loop power control, voltage controlled oscillator, capacitor control and microcontroller frequency control have been explained. Most of these techniques keep the resonance frequency stable in transcutaneous power transfer between the external coil and the coil implanted inside the body. Detailed information including carrier frequency, power efficiency, coils displacement, power consumption, supplied voltage and CMOS chip for the controllers techniques are investigated and summarized in the provided tables. From the rigorous review, it is observed that the existing automatic frequency controller technologies are more or less can capable of performing well in the implant devices; however, the systems are still not up to the mark. Accordingly, current challenges and problems of the typical automatic frequency controller techniques for power amplifiers are illustrated, with a brief suggestions and discussion section concerning the progress of implanted device research in the future. This review will hopefully lead to increasing efforts towards the development of low powered, highly efficient, high data rate and reliable automatic frequency controllers for implanted devices.
Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P