Displaying all 4 publications

Abstract:
Sort:
  1. Savell E, Gilmore AB, Sims M, Mony PK, Koon T, Yusoff K, et al.
    Bull World Health Organ, 2015 Dec 01;93(12):851-61G.
    PMID: 26668437 DOI: 10.2471/BLT.15.155846
    OBJECTIVE: To examine and compare tobacco marketing in 16 countries while the Framework Convention on Tobacco Control requires parties to implement a comprehensive ban on such marketing.

    METHODS: Between 2009 and 2012, a kilometre-long walk was completed by trained investigators in 462 communities across 16 countries to collect data on tobacco marketing. We interviewed community members about their exposure to traditional and non-traditional marketing in the previous six months. To examine differences in marketing between urban and rural communities and between high-, middle- and low-income countries, we used multilevel regression models controlling for potential confounders.

    FINDINGS: Compared with high-income countries, the number of tobacco advertisements observed was 81 times higher in low-income countries (incidence rate ratio, IRR: 80.98; 95% confidence interval, CI: 4.15-1578.42) and the number of tobacco outlets was 2.5 times higher in both low- and lower-middle-income countries (IRR: 2.58; 95% CI: 1.17-5.67 and IRR: 2.52; CI: 1.23-5.17, respectively). Of the 11,842 interviewees, 1184 (10%) reported seeing at least five types of tobacco marketing. Self-reported exposure to at least one type of traditional marketing was 10 times higher in low-income countries than in high-income countries (odds ratio, OR: 9.77; 95% CI: 1.24-76.77). For almost all measures, marketing exposure was significantly lower in the rural communities than in the urban communities.

    CONCLUSION: Despite global legislation to limit tobacco marketing, it appears ubiquitous. The frequency and type of tobacco marketing varies on the national level by income group and by community type, appearing to be greatest in low-income countries and urban communities.

  2. Duong M, Islam S, Rangarajan S, Teo K, O'Byrne PM, Schünemann HJ, et al.
    Lancet Respir Med, 2013 Oct;1(8):599-609.
    PMID: 24461663 DOI: 10.1016/S2213-2600(13)70164-4
    BACKGROUND: Despite the rising burden of chronic respiratory diseases, global data for lung function are not available. We investigated global variation in lung function in healthy populations by region to establish whether regional factors contribute to lung function.

    METHODS: In an international, community-based prospective study, we enrolled individuals from communities in 17 countries between Jan 1, 2005, and Dec 31, 2009 (except for in Karnataka, India, where enrolment began on Jan 1, 2003). Trained local staff obtained data from participants with interview-based questionnaires, measured weight and height, and recorded forced expiratory volume in 1 s (FEV₁) and forced vital capacity (FVC). We analysed data from participants 130-190 cm tall and aged 34-80 years who had a 5 pack-year smoking history or less, who were not affected by specified disorders and were not pregnant, and for whom we had at least two FEV₁ and FVC measurements that did not vary by more than 200 mL. We divided the countries into seven socioeconomic and geographical regions: south Asia (India, Bangladesh, and Pakistan), east Asia (China), southeast Asia (Malaysia), sub-Saharan Africa (South Africa and Zimbabwe), South America (Argentina, Brazil, Colombia, and Chile), the Middle East (Iran, United Arab Emirates, and Turkey), and North America or Europe (Canada, Sweden, and Poland). Data were analysed with non-linear regression to model height, age, sex, and region.

    FINDINGS: 153,996 individuals were enrolled from 628 communities. Data from 38,517 asymptomatic, healthy non-smokers (25,614 women; 12,903 men) were analysed. For all regions, lung function increased with height non-linearly, decreased with age, and was proportionately higher in men than women. The quantitative effect of height, age, and sex on lung function differed by region. Compared with North America or Europe, FEV1 adjusted for height, age, and sex was 31·3% (95% CI 30·8-31·8%) lower in south Asia, 24·2% (23·5-24·9%) lower in southeast Asia, 12·8% (12·4-13·4%) lower in east Asia, 20·9% (19·9-22·0%) lower in sub-Saharan Africa, 5·7% (5·1-6·4%) lower in South America, and 11·2% (10·6-11·8%) lower in the Middle East. We recorded similar but larger differences in FVC. The differences were not accounted for by variation in weight, urban versus rural location, and education level between regions.

    INTERPRETATION: Lung function differs substantially between regions of the world. These large differences are not explained by factors investigated in this study; the contribution of socioeconomic, genetic, and environmental factors and their interactions with lung function and lung health need further clarification.

    FUNDING: Full funding sources listed at end of the paper (see Acknowledgments).

  3. Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A, Orlandini A, et al.
    Lancet, 2015 Jul 18;386(9990):266-73.
    PMID: 25982160 DOI: 10.1016/S0140-6736(14)62000-6
    Reduced muscular strength, as measured by grip strength, has been associated with an increased risk of all-cause and cardiovascular mortality. Grip strength is appealing as a simple, quick, and inexpensive means of stratifying an individual's risk of cardiovascular death. However, the prognostic value of grip strength with respect to the number and range of populations and confounders is unknown. The aim of this study was to assess the independent prognostic importance of grip strength measurement in socioculturally and economically diverse countries.
  4. Chow CK, Corsi DJ, Gilmore AB, Kruger A, Igumbor E, Chifamba J, et al.
    BMJ Open, 2017 03 31;7(3):e013817.
    PMID: 28363924 DOI: 10.1136/bmjopen-2016-013817
    OBJECTIVES: This study examines in a cross-sectional study 'the tobacco control environment' including tobacco policy implementation and its association with quit ratio.

    SETTING: 545 communities from 17 high-income, upper-middle, low-middle and low-income countries (HIC, UMIC, LMIC, LIC) involved in the Environmental Profile of a Community's Health (EPOCH) study from 2009 to 2014.

    PARTICIPANTS: Community audits and surveys of adults (35-70 years, n=12 953).

    PRIMARY AND SECONDARY OUTCOME MEASURES: Summary scores of tobacco policy implementation (cost and availability of cigarettes, tobacco advertising, antismoking signage), social unacceptability and knowledge were associated with quit ratios (former vs ever smokers) using multilevel logistic regression models.

    RESULTS: Average tobacco control policy score was greater in communities from HIC. Overall 56.1% (306/545) of communities had >2 outlets selling cigarettes and in 28.6% (154/539) there was access to cheap cigarettes (<5cents/cigarette) (3.2% (3/93) in HIC, 0% UMIC, 52.6% (90/171) LMIC and 40.4% (61/151) in LIC). Effective bans (no tobacco advertisements) were in 63.0% (341/541) of communities (81.7% HIC, 52.8% UMIC, 65.1% LMIC and 57.6% LIC). In 70.4% (379/538) of communities, >80% of participants disapproved youth smoking (95.7% HIC, 57.6% UMIC, 76.3% LMIC and 58.9% LIC). The average knowledge score was >80% in 48.4% of communities (94.6% HIC, 53.6% UMIC, 31.8% LMIC and 35.1% LIC). Summary scores of policy implementation, social unacceptability and knowledge were positively and significantly associated with quit ratio and the associations varied by gender, for example, communities in the highest quintile of the combined scores had 5.0 times the quit ratio in men (Odds ratio (OR) 5·0, 95% CI 3.4 to 7.4) and 4.1 times the quit ratio in women (OR 4.1, 95% CI 2.4 to 7.1).

    CONCLUSIONS: This study suggests that more focus is needed on ensuring the tobacco control policy is actually implemented, particularly in LMICs. The gender-related differences in associations of policy, social unacceptability and knowledge suggest that different strategies to promoting quitting may need to be implemented in men compared to women.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links