Displaying all 2 publications

Abstract:
Sort:
  1. Issabayeva G, Aroua MK, Sulaiman NM
    J Hazard Mater, 2008 Jun 30;155(1-2):109-13.
    PMID: 18179867 DOI: 10.1016/j.jhazmat.2007.11.036
    The continuous adsorption of lead ions from aqueous solution on commercial, granular, unpretreated palm shell activated carbon (PSAC) was studied. Effect of pH, flow rates and presence of complexing agents (malonic and boric acids) were examined. The breakthrough period was longer at pH 5 indicating higher adsorption capacity of lead ions at higher pH. Increase of the flow rate, expectedly, resulted in the faster saturation of the carbon bed. Presence of complexing agents did not improve adsorption uptake of lead ions. However, presence of malonic acid resulted in smoother pH stabilization of solution compared to single lead and lead with boric acid systems. The results on continuous adsorption of lead were applied to the model proposed by Wang et al. [Y.-H. Wang, S.-H. Lin, R.-S. Juang, Removal of heavy metals ions from aqueous solutions using various low-cost adsorbents, J. Hazard. Mater. B 102 (2003) 291-302]. The agreement between experimental and modelled breakthrough curves was satisfactory at both pHs.
  2. Issabayeva G, Aroua MK, Sulaiman NM
    Bioresour Technol, 2006 Dec;97(18):2350-5.
    PMID: 16321520
    The performance of a commercially available palm shell based activated carbon to remove lead ions from aqueous solutions by adsorption was evaluated. The adsorption experiments were carried out at pH 3.0 and 5.0. The effect of malonic and boric acid presence on the adsorption of lead ions was also studied. Palm shell activated carbon showed high adsorption capacity for lead ions, especially at pH 5 with an ultimate uptake of 95.2mg/g. This high uptake showed palm shell activated carbon as amongst the best adsorbents for lead ions. Boric acid presence did not affect significantly lead uptake, whereas malonic acid decreased it. The diffuse layer surface complexation model was applied to predict the extent of adsorption. The model prediction was found to be in concordance with the experimental values.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links