We test the feasibility of TiO2(B)@carbon composites as adsorbents, derived from wheat straws, for tetracycline (TC) adsorption from aqueous solutions. Hydrochar (HC), biochar (BC), and hydrochar-derived pyrolysis char (HDPC) are synthesized hydrothermally from the waste and then functionalized with TiO2(B), named as 'Composite-1', 'Composite-2', and 'Composite-3', respectively. A higher loading of TiO2(B) into the HC was also synthesized for comparison, named as 'Composite-4'. To compare their physico-chemical changes before and after surface modification, the composites are characterized using FESEM-EDS, XRD, BET, FRTEM, and FTIR. The effects of H2O2 addition on TC removal are investigated. Adsorption kinetics and isotherms of TC removal are studied, while TC adsorption mechanisms are elaborated. We found that the Composite-4 has the highest TC removal (93%) at pH 7, 1 g/L of dose, and 4 h of reaction time at 50 mg/L of TC after adding H2O2 (10 mM). The TC adsorption capacities of the Composite-1 and Composite-4 are 40.65 and 49.26 mg/g, respectively. The TC removal by the Composite-1 follows the pseudo-second order. Overall, this suggests that converting the wheat straw into HC and then functionalizing its surface with TiO2(B) as a composite has added values to the waste as an adsorbent for wastewater treatment.
Over the past years, Indonesia, the world's fourth most populous country, has confronted environmental problems due to uncontrolled generation of municipal solid waste (MSW). While the integrated solid waste management (ISWM) represents a critical strategy for Indonesia to control its production, it is also recognized that economic approaches also need to be promoted to address the waste problem concertedly. In this case study, empirical approaches are developed to understand how a volume-based waste fee could be incorporated into MSW collection services and how to apply a zero-waste approach in Indonesia by adapting resource recovery initiatives, adapted from Germany's mature experiences in integrating the CE paradigm into the latter's MSWM practices. Currently, Sukunan village (Yogyakarta, Indonesia) promotes waste reduction at sources in the framework of community-based solid waste management (CBSWM) by mobilizing the local community for waste separation (organic and non-organic) and waste recycling. As a result, about 0.2 million Mt of CO2-eq emissions was avoided annually from local landfills. The economic benefits of recycling activities by the village's community also resulted in 30% reduction of the waste generated. This CBSWM scheme not only saves the government budget on waste collection, transport and disposal, but also extends the lifetime of local landfills as the final disposal sites. By integrating the CE paradigm into its MSWM practices through the implementation of economic instruments and adherence to the rule of law in the same way as Germany does, Indonesia could make positive changes to its environmental policy and regulation of MSW. A sound MSWM in Indonesia could play important roles in promoting the effectiveness of urban development with resource recovery approaches to facilitate its transition towards a CE nationwide in the long-term.