Displaying all 6 publications

Abstract:
Sort:
  1. Itoh M, Osaka K, Iizuka K, Kosugi Y, Lion M, Shiodera S
    Sci Total Environ, 2023 Feb 10;859(Pt 2):160319.
    PMID: 36410477 DOI: 10.1016/j.scitotenv.2022.160319
    Land conversion from natural forests to plantations (e.g., oil palm) in Southeast Asia is one of the most intensive land-use changes occurring worldwide. To clarify the effects of oil palm plantations on water quality, we conducted multipoint river and stream water sampling in peninsular Malaysia at the end of the rainy season over a 3-year period (2013-2015). We measured the major dissolved ions and stable isotope ratios of water (δ2H-H2O and δ18O-H2O) and nitrate (δ15N-NO3- and δ18O-NO3-) in water from the upper streams in mountainous forests to the midstream areas of two major rivers in peninsular Malaysia. The electrical conductivity increased, and the d-excess value (as an index of the degree of evaporation) decreased with increasing distance from the headwaters, suggesting the effect of evaporative enrichment and the addition of pollutants. We separated the sampling points into four groups (G1-G4) through cluster analysis of the water quality data. From the land use/land cover (LULC) classification maps developed from satellite images and local information, we found that G1 and G2 mainly consisted of sampling points in forested areas, while G3 and G4 were located in oil-palm-affected areas. The concentrations of major ions were higher in the oil palm areas, indicating the effects of fertilizer and limestone (i.e., pH adjustment) applications. The dissolved inorganic nitrogen concentration did not differ among the groups, but the dissolved organic carbon, total dissolved nitrogen, and δ15N-NO3- were higher in the oil palm area than in the forested area. Although the nitrogen concentration was low, even in the oil palm area, the significantly higher δ15N-NO3- in the oil palm area indicated substantial denitrification. This implies that denitrification contributed to the lowering of the NO3- concentration in rivers in the oil palm area, in addition to nutrient uptake by oil palm trees.
  2. Noordin R, Itoh M, Kimura E, Abdul Rahman R, Ravindran B, Mahmud R, et al.
    Filaria journal, 2007;6:9.
    PMID: 17961262
    In the global effort to eliminate lymphatic filariasis (LF), rapid field-applicable tests are useful tools that will allow on-site testing to be performed in remote places and the results to be obtained rapidly. Exclusive reliance on the few existing tests may jeopardize the progress of the LF elimination program, thus the introduction of other rapid tests would be useful to address this issue. Two new rapid immunochromatographic IgG4 cassette tests have been produced, namely WB rapid and panLF rapid, for detection of bancroftian filariasis and all three species of lymphatic filaria respectively. WB rapid was developed using BmSXP recombinant antigen, while PanLF rapid was developed using BmR1 and BmSXP recombinant antigens. A total of 165 WB rapid and 276 panLF rapid tests respectively were evaluated at USM and the rest were couriered to another university in Malaysia (98 WB rapid, 129 panLF rapid) and to universities in Indonesia (56 WB rapid, 62 panLF rapid), Japan (152 of each test) and India (18 of each test) where each of the tests underwent independent evaluations in a blinded manner. The average sensitivities of WB rapid and panLF rapid were found to be 97.6% (94%-100%) and 96.5% (94%-100%) respectively; while their average specificities were both 99.6% (99%-100%). Thus this study demonstrated that both the IgG4 rapid tests were highly sensitive and specific, and would be useful additional tests to facilitate the global drive to eliminate this disease.
  3. Lion M, Kosugi Y, Takanashi S, Noguchi S, Itoh M, Katsuyama M, et al.
    Hydrol Process, 2017 Nov 30;31(24):4338-4353.
    PMID: 32336875 DOI: 10.1002/hyp.11360
    To evaluate water use and the supporting water source of a tropical rainforest, a 4-year assessment of evapotranspiration (ET) was conducted in Pasoh Forest Reserve, a lowland dipterocarp forest in Peninsular Malaysia. The eddy covariance method and isotope signals of rain, plant, soil, and stream waters were used to determine forest water sources under different moisture conditions. Four sampling events were conducted to collect soil and plant twig samples in wet, moderate, dry, and very dry conditions for the identification of isotopic signals. Annual ET from 2012 to 2015 was quite stable with an average of 1,182 ± 26 mm, and a substantial daily ET was observed even during drought periods, although some decline was observed, corresponding with volumetric soil water content. During the wet period, water for ET was supplied from the surface soil layer between 0 and 0.5 m, whereas in the dry period, approximately 50% to 90% was supplied from the deeper soil layer below 0.5-m depth, originating from water precipitated several months previously at this forest. Isotope signatures demonstrated that the water sources of the plants, soil, and stream were all different. Water in plants was often different from soil water, probably because plant water came from a different source than water that was strongly bound to the soil particles. Plants showed no preference for soil depth with their size, whereas the existence of storage water in the xylem was suggested. The evapotranspiration at this forest is balanced and maintained using most of the available water sources except for a proportion of rapid response run-off.
  4. Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al.
    Arch Environ Contam Toxicol, 2017 Aug;73(2):230-239.
    PMID: 28534067 DOI: 10.1007/s00244-017-0414-9
    Microplastics (<5 mm) were extracted from sediment cores collected in Japan, Thailand, Malaysia, and South Africa by density separation after hydrogen peroxide treatment to remove biofilms were and identified using FTIR. Carbonyl and vinyl indices were used to avoid counting biopolymers as plastics. Microplastics composed of variety of polymers, including polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethyleneterphthalates (PET), polyethylene-polypropylene copolymer (PEP), and polyacrylates (PAK), were identified in the sediment. We measured microplastics between 315 µm and 5 mm, most of which were in the range 315 µm-1 mm. The abundance of microplastics in surface sediment varied from 100 pieces/kg-dry sediment in a core collected in the Gulf of Thailand to 1900 pieces/kg-dry sediment in a core collected in a canal in Tokyo Bay. A far higher stock of PE and PP composed microplastics in sediment compared with surface water samples collected in a canal in Tokyo Bay suggests that sediment is an important sink for microplastics. In dated sediment cores from Japan, microplastic pollution started in 1950s, and their abundance increased markedly toward the surface layer (i.e., 2000s). In all sediment cores from Japan, Thailand, Malaysia, and South Africa, the abundance of microplastics increased toward the surface, suggesting the global occurrence of and an increase in microplastic pollution over time.
  5. Nishina K, Melling L, Toyoda S, Itoh M, Terajima K, Waili JWB, et al.
    Sci Total Environ, 2023 May 10;872:162062.
    PMID: 36804973 DOI: 10.1016/j.scitotenv.2023.162062
    Oil palm plantations in Southeast Asia are the largest supplier of palm oil products and have been rapidly expanding in the last three decades even in peat-swamp areas. Oil palm plantations on peat ecosystems have a unique water management system that lowers the water table and, thus, may yield indirect N2O emissions from the peat drainage system. We conducted two seasons of spatial monitoring for the dissolved N2O concentrations in the drainage and adjacent rivers of palm oil plantations on peat swamps in Sarawak, Malaysia, to evaluate the magnitude of indirect N2O emissions from this ecosystem. In both the dry and wet seasons, the mean and median dissolved N2O concentrations exhibited over-saturation in the drainage water, i.e., the oil palm plantation drainage may be a source of N2O to the atmosphere. In the wet season, the spatial distribution of dissolved N2O showed bimodal peaks in both the unsaturated and over-saturated concentrations. The bulk δ15N of dissolved N2O was higher than the source of inorganic N in the oil palm plantation (i.e., N fertilizer and soil organic nitrogen) during both seasons. An isotopocule analysis of the dissolved N2O suggested that denitrification was a major source of N2O, followed by N2O reduction processes that occurred in the drainage water. The δ15N and site preference mapping analysis in dissolved N2O revealed that a significant proportion of the N2O produced in peat and drainage is reduced to N2 before being released into the atmosphere.
  6. Wijedasa LS, Jauhiainen J, Könönen M, Lampela M, Vasander H, Leblanc MC, et al.
    Glob Chang Biol, 2017 03;23(3):977-982.
    PMID: 27670948 DOI: 10.1111/gcb.13516
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links