AIM OF THE STUDY: To explore the antinociceptive (acute pain) and anti-neuropathic (chronic pain) activities of Lotus corniculatus leaves essential oil (LCEO) in addition to uncovering the possible mechanisms of antinociception.
MATERIALS AND METHODS: LCEO as well as the pure oleanolic acid (OA) compound, were assayed for their effects on acute (formalin induced paw licking test or FIPT) and chronic (cervical contusion injury models on the fifth cervical vertebra or CCS; 14-day intervals) pain. The possible involvements of NO-cGMP-K+ channel, TRPV, dopamine, cannabinoid, PPAR, adrenergic, and opioid mechanisms in the antinociceptive activity of LCEO have studied by formalin test. The levels of p53 and inflammatory markers were measured using a streptavidin biotin immune peroxidase complex and ELISA methods, respectively.
RESULTS: The LCEO and OA exerted antinociceptive activity in the first-phase of FIPT. Pretreatment with antagonists of TRPV1, dopamine D2, cannabinoid type1 and 2, and NO-cGMP-K+ channel blockers (glibenclamide, L-NAME and methylene blue) attenuated the antinociceptive effect of LCEO in FIPT. In addition, LCEO and OA meaningfully reduced hyperalgesia (days 6-14) and mechanical allodynia (days 2-14) in the CCS model. LCEO suppressed the apoptotic marker (p53) in CCS model and also ameliorated IL-2, TNF-α, and IL-1 in the spinal cord.
CONCLUSION: Finally, LCEO inhibited acute (possibly via the modulation of opioid, TRPV, dopamine, cannabinoid mechanisms as well as NO-cGMP-K+ channel) and chronic pain (via suppressing apoptotic and inflammatory markers) in male rats. The results also suggest that OA has analgesic activity against acute and chronic pain conditions.
METHODS: Formalin-induced paw licking model was used to assess the anti-nociceptive activity of CMEO and its major constituent, terpinolene (TP). The anti-nociceptive activity of these compounds was determined by investigating the roles of various non-opioid and NO-cGMP-K+ channels. Additionally, the anti-neuropathic potential of CMEO and TP was determined using cervical spinal cord contusion/CCS technique.
RESULTS: The CMEO exerted significant anti-nociceptive activity with a remarkable activity seen in the second phase of formalin-induced paw licking model and this activity were remarkably reversed by pre-treatment of naloxone (an opioid antagonist). Pretreatment with several types of NO-cGMP-potassium channel pathway meaningfully reversed the anti-nociceptive potential of CMEO in phase II of formalin model. Moreover, pre-treatment with several antagonists of non-opioid receptors revealed that only the antagonist of TRPV-1, serotonin type 3, 5-HT2, α2 adrenergic, and CB1 receptors (capsaicin, ondansetron, ketanserin, yohimbine, and SR141716A, respectively) reversed CMEO anti-nociception. CMEO and TP also remarkably reversed hyperalgesia and mechanical allodynia in the CCS technique.
CONCLUSION: The CMEO exerts anti-nociceptive and anti-neuropathic activities via the modulation of NO-cGMP potassium channel pathway, opioid as well as several non-opioid receptor activity. TP might partly contribute to the observed activities of CMEO.