Displaying all 3 publications

Abstract:
Sort:
  1. Jamilan MA, Abdullah J, Alang Ahmad SA, Md Noh MF
    J Food Sci Technol, 2019 Aug;56(8):3846-3853.
    PMID: 31413410 DOI: 10.1007/s13197-019-03855-x
    In this work, voltammetric study based on cetyltrimethylammonium bromide (CTAB) as an ion-pairing agent for the determination of iodine level in iodized table salt has been explored. CTAB was used as an intermediate compound between iodide (I-) and the electrode due to its ability to dissociate to produce cetyltrimethylammonium ions ([CTA]+). The [CTA]+ with a long hydrophobic alkyl chain can be directly adsorbed onto the surface of the working electrode, and this in turns coated the electrode with cationic charge and enhance the electrode ability to bind to iodide (I-) and other molecular iodine ions. A mixture of iodide and CTAB ([CTA]+I-) was prepared and potential of 1.0 V for 60.0 s was applied to pre-concentrate the solution on the working electrode causing the [CTA]+I- to oxidize to iodine (I2). The produced I2 immediately react with chloride ion (Cl-) from the electrolyte of hydrochloric acid (HCl) to produce I2Cl- and form ion-pair with CTA+ as [CTA]+I2Cl-. The linear calibration curve of the developed method towards iodide was in the concentration range of 0.5-4.0 mg/L with sensitivity of - 1.383 µA mg/L-1 cm-2 (R2 = 0.9950), limit of detection (LOD) of 0.3 mg/L and limit of quantification (LOQ) of 1.0 mg/L, respectively. The proposed method indicates good agreement with the standard method for iodine determination with recovery range from 95.0 to 104.3%. The developed method provided potential application as a portable on-site iodine detector.
  2. Abd Rashed A, Jamilan MA, Abdul Rahman S, Amin Nordin FD, Mohd Nawi MN
    Antibiotics (Basel), 2024 Nov 12;13(11).
    PMID: 39596767 DOI: 10.3390/antibiotics13111074
    BACKGROUND/OBJECTIVES: Microorganisms such as bacteria, viruses, and fungi are frequently the cause of infections. Antimicrobial agents, such as antibiotics, antivirals, and antifungals, are used to target and eliminate these infectious agents. On the other hand, inflammation is a natural response of the immune system to injury, infection, or irritation. Although herbal remedies have been used to treat these conditions for centuries and can be effective in certain situations, it is crucial to use them with caution. Not all herbal remedies are supported by scientific evidence, and their safety and efficacy can vary. Thus, we conducted this review to determine the potential health benefits of agarwood as an antimicrobial and anti-inflammatory agent.

    METHODS: Three databases (PubMed, Scopus, and Google Scholar) were used to search for original papers submitted between 2013 and 2023, using the Medical Subject Heading (MeSH) terms "agar-wood" crossed with the terms "antimicrobial" and/or "anti-inflammatory". Synonyms and relevant search terms were also searched.

    RESULTS: The most-studied agarwood for antimicrobial and anti-inflammatory agents is Aquilaria sinensis. Some studies have shown its potential application as a potent inhibitor of fungi, including Lasiodiplodia theobromae, Fusarium oxysporum, and Candida albicans. Moreover, it is capable of inhibiting Bacillus subtilis and Staphylococcus aureus activities. Several chromones detected in agarwood have been shown to inhibit NF-κB activation, LPS-induced NO production, and superoxide anion generation. In conclusion, more research is needed, particularly regarding future intervention studies, to enhance our knowledge and understanding of agarwood and its isolates.

    CONCLUSIONS: This review reveals that despite the absence of clinical trials, agarwood exhibits antimicrobial and anti-inflammatory properties.

  3. Bakon SK, Mohamad ZA, Jamilan MA, Hashim H, Kuman MY, Shaharudin R, et al.
    JMIR Res Protoc, 2023 May 29;12:e39022.
    PMID: 37247207 DOI: 10.2196/39022
    BACKGROUND: Antimicrobial resistance (AMR) has emerged as a major global public health challenge due to the overuse and misuse of antibiotics for humans and animals. Hospitals are among the major users of antibiotics, thereby having a large contribution to AMR.

    OBJECTIVE: The aim of this study is to determine the prevalence of antibiotic-resistant pathogenic bacteria and the level of antibiotic residues in the hospital effluents in Selangor, Malaysia.

    METHODS: A cross-sectional study will be performed in the state of Selangor, Malaysia. Tertiary hospitals will be identified based on the inclusion and exclusion criteria. The methods are divided into three phases: sample collection, microbiological analysis, and chemical analysis. Microbiological analyses will include the isolation of bacteria from hospital effluents by culturing on selective media. Antibiotic sensitivity testing will be performed on the isolated bacteria against ceftriaxone, ciprofloxacin, meropenem, vancomycin, colistin, and piperacillin/tazobactam. The identification of bacteria will be confirmed using 16S RNA polymerase chain reaction (PCR) and multiplex PCR will be performed to detect resistance genes (ermB, mecA, blaNDM-L, blaCTX-M, blaOXA-48, blaSHV, VanA, VanB, VanC1, mcr-1, mcr-2, mcr-3, Intl1, Intl2, and qnrA). Finally, the level of antibiotic residues will be measured using ultrahigh-performance liquid chromatography.

    RESULTS: The expected outcomes will be the prevalence of antibiotic-resistant Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter (ESKAPE) bacterial species from the hospital effluents, the occurrence of antibiotic resistance genes (ARGs) from the isolated ESKAPE bacteria, and the level of antibiotic residues that may be detected from the effluent. Sampling has been conducted in three hospitals. Data analysis from one hospital showed that as of July 2022, 80% (8/10) of E. faecium isolates were resistant to vancomycin and 10% (1/10) were resistant to ciprofloxacin. Further analysis will be conducted to determine if the isolates harbor any ARGs and effluent samples are being analyzed to detect antibiotic residues. Sampling activities will be resumed after being suspended due to the COVID-19 pandemic and are scheduled to end by December 2022.

    CONCLUSIONS: This study will provide the first baseline information to elucidate the current status of AMR of highly pathogenic bacteria present in hospital effluents in Malaysia.

    INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/39022.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links