Displaying all 2 publications

Abstract:
Sort:
  1. Qayoom I, Balkhi M, Mukhtar M, Abubakr A, Siddiqui U, Khan S, et al.
    Toxicol Rep, 2024 Jun;12:253-259.
    PMID: 38379553 DOI: 10.1016/j.toxrep.2024.02.002
    Organophosphate insecticide spray poses potential threat of contamination of environmental components their accumulation in aquatic organisms. Although various physiological deficits associated with their exposure in fishes are documented, yet their retention in their edible muscle tissues has been poorly studied. In this context, the study was undertaken to ascertain the bioaccumulation of two organophosphate insecticide compounds (dimethoate and chlorpyrifos) in the muscles of juvenile Cyprinus carpio. The study could provide insight into the risks to human health associated with consuming contaminated fish flesh. The fishes exposed to various concentrations of dimethoate and chlorpyrifos in-vivo for 96 to ascertain the uptake and retention of these insecticides in the muscle. Results indicated that fish muscles accumulated the residues at all the concentrations with the recovery of 2.99% (0.032 ppm) of dimethoate exposed to LC50 concentrations. In contrast, the chlorpyrifos residues were found Below the Detection Level (BDL) in the fishes exposed to LC50 concentrations. The percentage bioaccumulation of dimethoate in fish muscle was 88.10%, and that of chlorpyrifos was BDL. The bio-concentration factor was dose-dependent and increased with increasing doses of both insecticides. The study invites attention to human health risk assessment in the regions where contaminated fish are consumed without scientific supervision.
  2. Dudwal R, Jakhar BL, Khan Pathan AR, Kataria A, Dhaka SR, Jan I, et al.
    Heliyon, 2024 May 15;10(9):e30065.
    PMID: 38726197 DOI: 10.1016/j.heliyon.2024.e30065
    Chilli is an indispensable food item in the daily life of humans but it is affected by many insects, so various pesticides, including spiromesifen, are applied to chilli crops to protect this crop from insect infestation. However, the use of pesticides poses environmental and health issues. These issues have raised the demand for pesticide-free chillies among consumers. The primary aim of this study was to assess the efficacy of various decontamination methods in removing spiromesifen residues from chilli fruits. A randomized block design was employed to conduct a supervised field experiment at the Rajasthan Agricultural Research Institute in Durgapura, Jaipur, India. The samples of chillies treated with pesticides are subjected to seven different homemade techniques. The samples were extracted using the QuEChERS method, known for its efficiency, affordability, simplicity, robustness, and safety. The analysis of spiromesifen residues was conducted using gas chromatography (GC) equipped with an electron capture detector (ECD), and the results were verified using gas chromatography-mass spectrometry (GC-MS). Out of several decontamination methods, the lukewarm water treatment was more effective than any other decontamination method, which led to the highest elimination of spiromesifen residue, whereas rinsing with tap water eliminates the least amount of spiromesifen residue. So, the lukewarm water treatment is a safe, cost-effective, and eco-friendly approach to remove spiromesifen residues from Chilli.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links