Displaying all 4 publications

Abstract:
Sort:
  1. Joanne S, Vythilingam I, Yugavathy N, Doss JI
    Asian Pac J Trop Biomed, 2014 Jul;4(7):557-60.
    PMID: 25183276 DOI: 10.12980/APJTB.4.2014APJTB-2014-0020
    To develop an artificial and modified Wolbachia removal technique using tetracycline from naturally Wolbachia infected Aedes albopictus (Ae. albopictus) so as to be able to produce generations of Wolbachia free offsprings.
  2. Joanne S, Vythilingam I, Yugavathy N, Leong CS, Wong ML, AbuBakar S
    Acta Trop, 2015 Aug;148:38-45.
    PMID: 25899523 DOI: 10.1016/j.actatropica.2015.04.003
    Wolbachia are maternally transmitted bacteria found in most arthropods and nematodes, but little is known about their distribution and reproductive dynamics in the Malaysian dengue vector Aedes albopictus. In this study, polymerase chain reaction (PCR) was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the country using wsp specific primers. Ae. albopictus had Wolbachia infection ranging from 60 to 100%. No sequence diversity of wsp gene was found within all wAlbA and wAlbB sequences. Our findings suggest that Wolbachia infection amongst the Malaysian Ae. albopictus were not homogenously distributed in all districts in Malaysia. The presence of Wolbachia in different organs of Ae. albopictus was also determined. Wolbachia were only found in the ovaries and midguts of the mosquitoes, while absent in the salivary glands. The effects of Wolbachia on Ae. albopictus fecundity, longevity and egg viability were studied using infected and uninfected colonies. The removal of Wolbachia from Ae. albopictus resulted in reduced fecundity, longevity and egg viability, thus. Wolbachia seem to play a vital role in Ae. albopictus reproductive system.
  3. Joanne S, Vythilingam I, Teoh BT, Leong CS, Tan KK, Wong ML, et al.
    Trop Med Int Health, 2017 09;22(9):1154-1165.
    PMID: 28653334 DOI: 10.1111/tmi.12918
    OBJECTIVE: To determine the susceptibility status of Aedes albopictus with and without Wolbachia to the four dengue virus serotypes.

    METHODS: Two newly colonised colonies of Ae. albopictus from the wild were used for the study. One colony was naturally infected with Wolbachia while in the other Wolbachia was removed by tetracycline treatment. Both colonies were orally infected with dengue virus-infected fresh blood meal. Dengue virus load was measured using quantitative RT-PCR at four-time intervals in the salivary glands, midguts and ovaries.

    RESULTS: Wolbachia did not significantly affect Malaysian Ae. albopictus dengue infection or the dissemination rate for all four dengue virus serotypes. Malaysian Ae. albopictus had the highest replication kinetics for DENV-1 and the highest salivary gland and midgut infection rate for DENV-4.

    CONCLUSION: Wolbachia, which naturally exists in Malaysian Ae. albopictus, does not significantly affect dengue virus replication. Malaysian Ae. albopictus is susceptible to dengue virus infections and capable of transmitting dengue virus, especially DENV-1 and DENV-4. Removal of Wolbachia from Malaysian Ae. albopictus would not reduce their susceptibility status.

  4. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YA, Sekaran SD, et al.
    Parasit Vectors, 2017 Mar 21;10(1):151.
    PMID: 28327173 DOI: 10.1186/s13071-017-2091-y
    BACKGROUND: Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics.

    METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.

    RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.

    CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links