Displaying all 2 publications

Abstract:
Sort:
  1. Ahmad NH, Huang L, Juneja V
    Food Res Int, 2024 Jan;176:113786.
    PMID: 38163703 DOI: 10.1016/j.foodres.2023.113786
    Liquid egg yolk (LEY) is often treated with phospholipase A2 (PLA2) to improve its emulsifying capacity and thermal stability. However, this process may allow certain pathogens to grow. The objective of this study was to evaluate the growth kinetics of mesophilic Bacillus cereus in LEY during PLA2 treatment. Samples, inoculated with B. cereus vegetative cells, were incubated isothermally at different temperatures between 9 and 50 °C to observe the bacterial growth and survival. Under the observation conditions, bacterial growth occurred between 15 and 48 °C, but not at 9 and 50 °C. The growth curves were analyzed using the USDA IPMP-Global Fit, with the no-lag phase model as the primary model in combination with either the cardinal temperatures model (CTM) or the Huang square-root model (HSRM) as the secondary model. While similar maximum growth temperatures (Tmax) were determined (48.4 °C for HSRM and 48.1 °C for CTM), the minimum growth temperature (Tmin) of the HSRM more accurately described the lower limit (9.26 °C), in contrast to 6.51 °C for CTM, suggesting that the combination of the no-lag phase model and HSRM was more suitable to describe the growth of mesophilic B. cereus in LEY. The root mean square error (RMSE) of model validation and development was <0.5 log CFU/g, indicating the combination of the no-lag phase model and HSRM could predict the growth of mesophilic B. cereus in LEY during PLA2 treatment. The results of this study may allow the food industry to choose a suitable temperature for PLA2 treatment of LEY to prevent the growth of mesophilic B. cereus.
  2. Huang L, Ahmad NH, Juneja V, Stapp-Kamotani E, Gabiola J, Minocha U, et al.
    Food Microbiol, 2024 Apr;118:104420.
    PMID: 38049265 DOI: 10.1016/j.fm.2023.104420
    During commercial production of liquid egg yolk (LEY), phospholipase A2 (PLA2) is used to improve its emulsification capacity and thermal stability. The enzymatic treatment may occur at elevated temperatures such as 50 °C, potentially allowing foodborne pathogens, such as Bacillus cereus, to grow. Little knowledge is available concerning growth of B. cereus in LEY during PLA2 treatment. Therefore, the objective of this study was to investigate the growth kinetics of B. cereus during PLA2 treatment using pathogenic B. cytotoxicus NVH391-98, the most thermotolerant member in the B. cereus group, as a surrogate. Inoculated LEY samples were placed in precision programmable incubators to observe the growth of B. cytotoxicus NVH391-98 under multiple isothermal and dynamic temperature conditions between 20 and 53 °C. The bacterial growth was described using the differential Baranyi model coupled with two different secondary models. The kinetic parameters were determined using one-step dynamic inverse analysis of multiple growth curves. The least square method was used in combination with the 4th order Runge-Kutta method to solve the differential Baranyi model using multiple growth curves to determine the cardinal kinetic parameters. The results showed that B. cytotoxicus NVH391-98 can grow prolifically at 50 °C. The estimated minimum, optimum and maximum temperatures were 16.7 or 18.5, 47.8 or 48.1, and 52.1 or 52.4 °C, respectively, depending on the secondary models, with an optimum growth rate of 2.1 log colony-forming-unit (CFU)/g per hour. The dynamic model is validated using isothermal curves with reasonable accuracy. B. cytotoxicus died off slowly at 15 °C. At 55 °C, thermal inactivation was observed, with a D value of approximately 2.7 h. Holding at 55 °C or below 15 °C can effectively prevent the growth of B. cytotoxicus in egg yolk.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links