Nanogels offer hope for precise drug delivery, while addressing drug delivery hurdles is vital for effective prostate cancer (PCa) management. We developed an injectable elastin nanogels (ENG) for efficient drug delivery system to overcome castration-resistant prostate cancer (CRPC) by delivering Decursin, a small molecule inhibitor that blocks Wnt/βcatenin pathways for PCa. The ENG exhibited favourable characteristics such as biocompatibility, flexibility, and low toxicity. In this study, size, shape, surface charge, chemical composition, thermal stability, and other properties of ENG were used to confirm the successful synthesis and incorporation of Decursin (DEC) into elastin nanogels (ENG) for prostate cancer therapy. In vitro studies demonstrated sustained release of DEC from the ENG over 120 h, with a pH-dependent release pattern. DU145 cell line induces moderate cytotoxicity of DEC-ENG indicates that nanomedicine has an impact on cell viability and helps strike a balance between therapeutics efficacy and safety while the EPR effect enables targeted drug delivery to prostate tumor sites compared to free DEC. Morphological analysis further supported the effectiveness of DEC-ENG in inducing cell death. Overall, these findings highlight the promising role of ENG-encapsulated decursin as a targeted drug delivery system for CRPC.
To evaluate the contribution of non-synonymous-coding variants of known familial and genome-wide association studies (GWAS)-linked genes for Parkinson's disease (PD) to PD risk in the East Asian population, we sequenced all the coding exons of 39 PD-related disease genes and evaluated the accumulation of rare non-synonymous-coding variants in 375 early-onset PD cases and 399 controls. We also genotyped 782 non-synonymous-coding variants of these genes in 710 late-onset PD cases and 9046 population controls. Significant enrichment of LRRK2 variants was observed in both early- and late-onset PD (odds ratio = 1.58; 95% confidence interval = 1.29-1.93; P = 8.05 × 10(-6)). Moderate enrichment was also observed in FGF20, MCCC1, GBA and ITGA8. Half of the rare variants anticipated to cause loss of function of these genes were present in healthy controls. Overall, non-synonymous-coding variants of known familial and GWAS-linked genes appear to make a limited contribution to PD risk, suggesting that clinical sequencing of these genes will provide limited information for risk prediction and molecular diagnosis.