sugar industry is one of the industries that produce a high amount of
pollutant since its wastewater contains high amount of organic material, biochemical
oxygen demand (bod) and chemical oxygen demand (cod). if this waste is
discharged without a proper treatment into the watercourse, it can cause problem to aquatic
life and environment. for the primary treatment process, sugar wastewater can be treated
by using chemical precipitation method which involves coagulation process. currently,
ferric chloride has been used as the coagulant but it consumes more alkalinity and
corrosive. in this study, the suitable coagulant to be used to treat the wastewater from sugar
industry and the optimum conditions to achieve high percentage removal of cod was
determined. the characteristic of the wastewater was firstly determined. then, the most
suitable coagulant to be used for the treatment was studied by determining their efficiency
to reduce cod and tss in the wastewater at different dosages. aluminium sulphate
(alum), ferric chloride and polyaluminium chloride (pac) were chosen to be studied for
suitable coagulant. The optimum condition of the coagulant (ph, coagulant dosage, fast
mixing speed) was determined by using design expert software. results showed that alum
can be used to effectively remove 42.9% of cod and 100% of tss at high dosage (50
mg/l). the optimum condition of alum was at ph 5.2, 10 mg/l of alum and 250 rpm of
mixing speed. this shows that at optimum condition, alum can be used to treat wastewater
from sugar industry.
The tentative identification of bioactive compounds in the extract of Vernonia amygdalina leaf was carried out using positive ionization of Liquid chromatography-mass spectrometry quadrupole time of flight (LC-Q-TOF/MS). The positive ionization is associated with the presence of saponins, flavonoids, alkaloids, terpenoids, and glycosides. Tentative assignments of the secondary metabolites were performed by comparing the MS fragmentation patterns with Waters® UNIFY library which allows positive identification of the compounds based on the spectral match. All the metabolites compounds were estimated and presented in a BPI (Base peak intensity) plot. These data are the unpublished supplementary materials related to "Ethanolic extraction of bioactive compounds from V. amygdalina leaf using response surface methodology as an optimization tool" (Alara et al., 2018).