Displaying all 2 publications

Abstract:
Sort:
  1. Tayan O, Kabir MN, Alginahi YM
    ScientificWorldJournal, 2014;2014:514652.
    PMID: 25254247 DOI: 10.1155/2014/514652
    This paper addresses the problems and threats associated with verification of integrity, proof of authenticity, tamper detection, and copyright protection for digital-text content. Such issues were largely addressed in the literature for images, audio, and video, with only a few papers addressing the challenge of sensitive plain-text media under known constraints. Specifically, with text as the predominant online communication medium, it becomes crucial that techniques are deployed to protect such information. A number of digital-signature, hashing, and watermarking schemes have been proposed that essentially bind source data or embed invisible data in a cover media to achieve its goal. While many such complex schemes with resource redundancies are sufficient in offline and less-sensitive texts, this paper proposes a hybrid approach based on zero-watermarking and digital-signature-like manipulations for sensitive text documents in order to achieve content originality and integrity verification without physically modifying the cover text in anyway. The proposed algorithm was implemented and shown to be robust against undetected content modifications and is capable of confirming proof of originality whilst detecting and locating deliberate/nondeliberate tampering. Additionally, enhancements in resource utilisation and reduced redundancies were achieved in comparison to traditional encryption-based approaches. Finally, analysis and remarks are made about the current state of the art, and future research issues are discussed under the given constraints.
  2. Jing W, Tao H, Rahman MA, Kabir MN, Yafeng L, Zhang R, et al.
    Work, 2021;68(3):923-934.
    PMID: 33612534 DOI: 10.3233/WOR-203426
    BACKGROUND: Human-Computer Interaction (HCI) is incorporated with a variety of applications for input processing and response actions. Facial recognition systems in workplaces and security systems help to improve the detection and classification of humans based on the vision experienced by the input system.

    OBJECTIVES: In this manuscript, the Robotic Facial Recognition System using the Compound Classifier (RERS-CC) is introduced to improve the recognition rate of human faces. The process is differentiated into classification, detection, and recognition phases that employ principal component analysis based learning. In this learning process, the errors in image processing based on the extracted different features are used for error classification and accuracy improvements.

    RESULTS: The performance of the proposed RERS-CC is validated experimentally using the input image dataset in MATLAB tool. The performance results show that the proposed method improves detection and recognition accuracy with fewer errors and processing time.

    CONCLUSION: The input image is processed with the knowledge of the features and errors that are observed with different orientations and time instances. With the help of matching dataset and the similarity index verification, the proposed method identifies precise human face with augmented true positives and recognition rate.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links