Aim: We are presenting a patient with an unusual cough-induced ICA dissection.
Case Report: A 42-year-old health care worker presented with bilateral hand numbness which resolved spontaneously. This initial episode was followed 9 days later with intermittent episodes of right hand and leg weakness with speech difficulty. Two days later, he had another episode of speech difficulty. One week prior to the first presentation, he had upper respiratory tract infection with ongoing strong bouts of coughing. Magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) of the brain showed early ischaemic changes at the left frontal and left parietal regions. MR angiography (MRA) showed high signal intensity at the left proximal ICA and poor flow beyond the left carotid bulb. Cerebral angiography revealed left ICA dissection.
Conclusion: Proper identification of cough-induced extracranial ICA dissection is important because this is treatable.
METHODS: AIS patients treated with IV rt-PA from February 2012 to August 2016 were recruited. Demographic data, National Institutes of Health Stroke Scale (NIHSS) scores, timing and neuroradiological findings were recorded. Patients received a dose of 0.9 mg/kg IV rt-PA within 4.5 hours of symptom onset. mRS score was evaluated at discharge and three months, and good and poor clinical outcomes were defined as scores of 0-2 and 3-6, respectively. Baseline THRIVE scores were assessed.
RESULTS: 36 patients received IV rt-PA. 20 (55.6%) patients had an mRS score of 0-2 at three months. Based on THRIVE score, 86.1% had a good or moderately good prognosis. On univariate analysis, poor outcome was associated with NIHSS score before rt-PA (p = 0.03), THRIVE score (p = 0.02), stroke subtype (p = 0.049) and diabetes mellitus (DM; p = 0.06). Multiple logistic regression showed that outcome was significantly associated with NIHSS score before rt-PA (p = 0.032) and DM (p = 0.010).
CONCLUSION: Our newly developed Malaysian IV rt-PA service is safe, with similar outcomes to the published literature. Functional outcome after thrombolysis was associated with baseline NIHSS score and DM.
PURPOSE: To evaluate the accuracy, safety, and diagnostic outcome of fluoroscopic guided and CT transpedicular biopsy techniques.
STUDY DESIGN: Prospective randomized trial.
PATIENT SAMPLE: Sixty consecutive patients with clinical symptoms and radiological features suggestive of spinal infection or malignancy were recruited and randomized into fluoroscopic or CT guided spinal biopsy groups. Both groups were similar in terms of patient demographics, distribution of spinal infections and malignancy cases, and the level of biopsies.
OUTCOME MEASURES: The primary outcome measure was diagnostic accuracy of both methods, determined based on true positive, true negative, false positive, and false negative biopsy findings. Secondary outcome measures included radiation exposure to patients and doctors, complications, and postbiopsy pain score.
METHODS: A transpedicular approach was performed with an 8G core biopsy needle. Specimens were sent for histopathological and microbiological examinations. Diagnosis was made based on biopsy results, clinical criteria and monitoring of disease progression during a 6-month follow up duration. Clinical criteria included presence of risk factors, level of inflammatory markers and magnetic resonance imaging findings. Radiation exposure to patients and doctors was measured with dosimeters.
RESULTS: There was no significant difference between the diagnostic accuracy of fluoroscopic and CT guided spinal biopsy (p=0.67) or between the diagnostic accuracy of spinal infection and spinal tumor in both groups (p=0.402 for fluoroscopy group and p=0.223 for CT group). Radiation exposure to patients was approximately 26 times higher in the CT group. Radiation exposure to doctors in the CT group was approximately 2 times higher compared to the fluoroscopic group if a lead shield was not used. Lead shields significantly reduced radiation exposure to doctors anywhere from 2 to 8 times. No complications were observed for either group and the differences in postbiopsy pain scores were not significant.
CONCLUSIONS: The accuracy, procedure time, complication rate and pain score for both groups were similar. However, radiation exposure to patients and doctors were significantly higher in the CT group without lead protection. With lead protection, radiation to doctors reduced significantly.
MATERIAL AND METHODS: Forty-two glioma patients were subjected to MRI using a standard tumor protocol with diffusion tensor imaging (DTI). The tumor and peritumor regions were delineated using snake model with reference to structural and diffusion MRI. A preprocessing pipeline of the structural MRI image, DTI data, and tumor regions was implemented. Tractography was performed to delineate the white matter (WM) tracts in the selected tumor regions via probabilistic fiber tracking. DTI indices were investigated through comparative mapping of WM tracts and tumor regions in low-grade gliomas (LGG) and high-grade gliomas (HGG).
RESULTS: Significant differences were seen in the planar tensor (Cp) in peritumor regions; mean diffusivity, axial diffusivity and pure isotropic diffusion in solid-enhancing tumor regions; and fractional anisotropy, axial diffusivity, pure anisotropic diffusion (q), total magnitude of diffusion tensor (L), relative anisotropy, Cp and spherical tensor (Cs) in solid nonenhancing tumor regions for affected WM tracts. In most cases of HGG, the WM tracts were not completely destroyed, but found intact inside the tumor.
DISCUSSION: Probabilistic fiber tracking revealed the existence and distribution of WM tracts inside tumor core for both LGG and HGG groups. There were more DTI indices in the solid nonenhancing tumor region, which showed significant differences between LGG and HGG.