Displaying all 3 publications

Abstract:
Sort:
  1. Pandey RP, Kallem P, Rasheed PA, Mahmoud KA, Banat F, Lau WJ, et al.
    Chemosphere, 2022 Feb;289:133144.
    PMID: 34863730 DOI: 10.1016/j.chemosphere.2021.133144
    An enhanced water flux and anti-fouling nanocomposite ultrafiltration membrane based on quaternary ammoniumpropylated polysilsesquioxane (QAPS)/cellulose acetate (QAPS@CA) was fabricated by in situ sol-gel processing via phase inversion followed by quaternization with methyl iodide (CH3I). Membrane characterizations were performed based on the contact angle, FTIR, SEM, and TGA properties. Membrane separation performance was assessed in terms of pure water flux, rejection, and fouling resistance. The 7%QAPS@CA nanocomposite membrane showed an increased wettability (46.6° water contact angle), water uptake (113%) and a high pure water permeability of ∼370 L m-2 h-1 bar-1. Furthermore, the 7%QAPS@CA nanocomposite membrane exhibited excellent bactericidal properties (∼97.5% growth inhibition) against Escherichia coli (E. coli) compared to the bare CA membrane (0% growth inhibition). The 7%QAPS@CA nanocomposite membrane can be recommended for water treatment and biomedical applications.
  2. Sai Manogna K, Deva Prasad Raju B, Rajasekhara Reddy G, Kallem P, Shaik MI, John Sushma N
    Heliyon, 2024 Feb 15;10(3):e25064.
    PMID: 38352738 DOI: 10.1016/j.heliyon.2024.e25064
    Breast cancer remains a significant global health concern, necessitating the development of novel therapeutic approaches. In this study, we investigate the role of Eu3+ doped hydroxyapatite nanocomposites (Han: Eu3+) in the treatment of MCF7 and 4T1 breast cancer cell lines. Furthermore, we explored the structural and luminescent properties of these nanocomposites. Han: Eu3+ were synthesized using a modified co-precipitation method, and their morphology and crystal structure were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) in which the average crystalline size of Han: Eu3+ was found to be 25 nm, rendering them suitable for cellular uptake and targeted therapy. To gain insights into the luminescent properties of Han: Eu3+, their excitation and emission spectra were recorded using photoluminescence spectrometer. The characteristic red emission of Eu3+ ions was observed upon excitation, validating the successful doping of Eu3+ into the Han lattice, which was confirmed by the CIE chromaticity coordinate study. These luminescent properties of Han: Eu3+ hold promise for potential applications in bioimaging. To evaluate the efficacy of Han: Eu3+ in breast cancer treatment, MCF7 and 4T1 cell lines were exposed to varying concentrations of the nanocomposites. Cell viability assays revealed a concentration-dependent reduction in cell viability, indicating the potential anticancer activity of Han: Eu3+. The findings of this study contribute to the expanding field of nanomedicine, bringing targeted breast cancer treatments and us closer to more effective.
  3. Sunaiwi R, Gaur R, Azhar Abdul Razab MK, Hadzuan FH, Nawi NM, Abdul Aziz MZ, et al.
    Heliyon, 2024 Oct 15;10(19):e38682.
    PMID: 39403514 DOI: 10.1016/j.heliyon.2024.e38682
    Patients undergoing high-dose radioiodine ablation (RAI) therapy in Nuclear Medicine Department need to be isolated in a special designed ward for a few days. Large amount of clinical radioactive wastewater from patient body is produced during high-activity RAI therapy. The radioactive wastewater needs to store in a delay tank until the radioactivity decayed below acceptable limit before being discharged and indirectly limit the patient admission and treatment. This study is to propose an alternative antibacterial adsorbent for I-131 extraction from clinical radioactive wastewater at the nuclear medicine department using graphene oxide silver (GOAg) and bamboo activated carbon (BAC). The synthesised adsorbents and their sediments (filtered sample) were analysed using field emission scanning electron microscopy (FESEM) for morphological analysis and analysed using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). XPS spectra for C 1s adsorbents show intensity peaks at 284.45 eV (C=C) and 285.3 eV (C-C) for GOAg and its sediments, and 284.35 eV (C-C), 287.00 eV (C=O), and 290.07 eV (π-π∗ transitions) for BAC and its sediments. FTIR spectra reveal various functional groups of adsorbents: C=C (1637.50772 cm-1), C=O (1340.48041 cm-1), and C-O-C (1031.88060 cm-1) for GOAg and its sediments, and C=C (1635.57897 cm-1), C-C (1257.54421 cm-1), and C-O (1188.10925 cm-1) for BAC and its sediments. XRD patterns exhibit peaks at 2θ = 27.82°, 29.39°, 32.24°, and 46.22°, which can be attributed to the (002) diffraction plane, (220) crystallographic plane, (111) plane of Ag2O, and (200) crystallographic plane, respectively, for GOAg and its sediments. Meanwhile, the peaks at 2θ = 26.56° and 42.41°, which correspond to (002) and (100) planes, respectively, for BAC and its sediments. The d-spacing and the crystallinity index of each adsorbent were also determined. The estimation of the remaining β- particles during the adsorption of I-131 was carried out using PHITS. The finding of this study is beneficial for alternative radionuclide extractions technique from clinical radioactive wastewater in nuclear medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links