In radio wave hyperthermia therapy, array antenna configuration was mainly studied to generate a small spot at the diseased part. Array antennas have the flexibility in controlling radiation performance, such as spot positions, by using their numerous radiating elements. However, the flexibility is achieved at the expense of antenna structure complexity. On the other hand, a lens antenna can concentrate radio waves into a small spot by forming a lens shape. The simplicity of a lens antenna structure lends itself to easy handling in a practical application. Moreover, the frequency independence of the lens antenna allows for a more flexible selection of hyperthermia therapy frequencies. Therefore, the lens antenna is selected as a focusing antenna in this paper. The lens shaping method and the temperature increment measurement are the main contents of this paper. The designed lens has a diameter of 30 cm, a focusing distance of 30 cm, and a working frequency of 2.45 GHz. A thin lens design method is applied to reduce lens weight. Firstly, the focusing ability of the designed lens is ensured by comparing the spot size results of electromagnetic (EM) simulation with its theoretical value. A spot size of 1.77 cm is obtained in both cases. Next, the temperature increment is examined by EM simulations. The temperature at the 2 cm tumor was increased to 41 °C from the human body temperature of 37 °C by an input power of 10 Watts (W). For the temperature increment measurement, a tumor within human body phantom is utilized and the available input power is reduced to 4 W. The tumor temperature increased from 21.5 °C of room temperature to 24.4 °C, which was captured by a thermal imaging camera. As a result, the functionality of the lens antenna for hyperthermia therapy is verified.
In the 5G mobile system, new features such as millimetre wave operation, small cell size and multi beam are requested at base stations. At millimetre wave, the base station antennas become very small in size, which is about 30 cm; thus, dielectric lens antennas that have excellent multi beam radiation pattern performance are suitable candidates. For base station application, the lens antennas with small thickness and small curvature are requested for light weight and ease of installation. In this paper, a new lens shaping method for thin and small lens curvature is proposed. In order to develop the thin lens antenna, comparisons of antenna structures with conventional aperture distribution lens and Abbe's sine lens are made. Moreover, multi beam radiation pattern of three types of lenses are compared. As a result, the thin and small curvature of the proposed lens and an excellent multi beam radiation pattern are ensured.
The incoming 5G technology requires antennas with a greater capacity, wider wireless spectrum utilisation, high gain, and steer-ability. This is due to the cramped spectrum utilisation in the previous generation. As a matter of fact, conventional antennas are unable to serve the new frequency due to the limitations in fabrication and installation mainly for smaller sizes. The use of graphene material promises antennas with smaller sizes and thinner dimensions, yet capable of emitting higher frequencies. Hence, graphene antennas were studied at a frequency of 15 GHz in both single and array elements. The high-frequency antenna contributed to a large bandwidth and was excited by coplanar waveguide for easy fabrication on one surface via screen printing. The defected ground structure was applied in an array element to improve the radiation and increase the gain. The results showed that the printed, single element graphene antenna produced an impedance bandwidth, gain, and efficiency of 48.64%, 2.87 dBi, and 67.44%, respectively. Meanwhile, the array element produced slightly better efficiency (72.98%), approximately the same impedance bandwidth as the single element (48.98%), but higher gain (8.41 dBi). Moreover, it provided a beam width of 21.2° with scanning beam capability from 0° up to 39.05°. Thus, it was proved that graphene materials can be applied in 5G.