Displaying all 2 publications

Abstract:
Sort:
  1. Mohammadi A, Karimzadeh S, Jalal SJ, Kamran KV, Shahabi H, Homayouni S, et al.
    Sensors (Basel), 2020 Dec 16;20(24).
    PMID: 33339435 DOI: 10.3390/s20247214
    Digital elevation model (DEM) plays a vital role in hydrological modelling and environmental studies. Many essential layers can be extracted from this land surface information, including slope, aspect, rivers, and curvature. Therefore, DEM quality and accuracy will affect the extracted features and the whole process of modeling. Despite freely available DEMs from various sources, many researchers generate this information for their areas from various observations. Sentinal-1 synthetic aperture radar (SAR) images are among the best Earth observations for DEM generation thanks to their availabilities, high-resolution, and C-band sensitivity to surface structure. This paper presents a comparative study, from a hydrological point of view, on the quality and reliability of the DEMs generated from Sentinel-1 data and DEMs from other sources such as AIRSAR, ALOS-PALSAR, TanDEM-X, and SRTM. To this end, pair of Sentinel-1 data were acquired and processed using the SAR interferometry technique to produce a DEM for two different study areas of a part of the Cameron Highlands, Pahang, Malaysia, a part of Sanandaj, Iran. Based on the estimated linear regression and standard errors, generating DEM from Sentinel-1 did not yield promising results. The river streams for all DEMs were extracted using geospatial analysis tool in a geographic information system (GIS) environment. The results indicated that because of the higher spatial resolution (compared to SRTM and TanDEM-X), more stream orders were delineated from AIRSAR and Sentinel-1 DEMs. Due to the shorter perpendicular baseline, the phase decorrelation in the created DEM resulted in a lot of noise. At the same time, results from ground control points (GCPs) showed that the created DEM from Sentinel-1 is not promising. Therefore, other DEMs' performance, such as 90-meters' TanDEM-X and 30-meters' SRTM, are better than Sentinel-1 DEM (with a better spatial resolution).
  2. Huy NT, Chico RM, Huan VT, Shaikhkhalil HW, Uyen VNT, Qarawi ATA, et al.
    PLoS One, 2021;16(12):e0258348.
    PMID: 34936646 DOI: 10.1371/journal.pone.0258348
    BACKGROUND: Since the COVID-19 pandemic began, there have been concerns related to the preparedness of healthcare workers (HCWs). This study aimed to describe the level of awareness and preparedness of hospital HCWs at the time of the first wave.

    METHODS: This multinational, multicenter, cross-sectional survey was conducted among hospital HCWs from February to May 2020. We used a hierarchical logistic regression multivariate analysis to adjust the influence of variables based on awareness and preparedness. We then used association rule mining to identify relationships between HCW confidence in handling suspected COVID-19 patients and prior COVID-19 case-management training.

    RESULTS: We surveyed 24,653 HCWs from 371 hospitals across 57 countries and received 17,302 responses from 70.2% HCWs overall. The median COVID-19 preparedness score was 11.0 (interquartile range [IQR] = 6.0-14.0) and the median awareness score was 29.6 (IQR = 26.6-32.6). HCWs at COVID-19 designated facilities with previous outbreak experience, or HCWs who were trained for dealing with the SARS-CoV-2 outbreak, had significantly higher levels of preparedness and awareness (p<0.001). Association rule mining suggests that nurses and doctors who had a 'great-extent-of-confidence' in handling suspected COVID-19 patients had participated in COVID-19 training courses. Male participants (mean difference = 0.34; 95% CI = 0.22, 0.46; p<0.001) and nurses (mean difference = 0.67; 95% CI = 0.53, 0.81; p<0.001) had higher preparedness scores compared to women participants and doctors.

    INTERPRETATION: There was an unsurprising high level of awareness and preparedness among HCWs who participated in COVID-19 training courses. However, disparity existed along the lines of gender and type of HCW. It is unknown whether the difference in COVID-19 preparedness that we detected early in the pandemic may have translated into disproportionate SARS-CoV-2 burden of disease by gender or HCW type.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links