The high alkaline condition of concrete naturally protects embedded steel bars from corrosion by forming a passive protective film. The pH of concrete is generally high, but concrete with different mix compositions may have various pH values. The pH of concrete may decrease over time due to long-term mechanical, chemical, biological and physical factors. Therefore, monitoring the pH value of concrete is crucial to checking if its alkalinity is within an acceptable range and ensuring that the concrete structure is in good health condition. However, the pH measurement for cement-based materials is not standardised. Ex-situ leaching, one of the recommended methods for pH measurement, is simple and practical. In this method, the sample will be crushed, leached and tested using a pH electrode probe. The lifespan of the pH electrode probe may decrease due to the existing suspended particles in the solution. Therefore, one recommendation is to filter the solution before using the probe. In this study, the effect of different filtering setups on the pH value of a cement mortar with a cement-to-sand ratio of 1:3 was evaluated. pH test results showed that filtering can produce similar outcomes to those without filtering, regardless of the type of filter paper and its pore size. However, filtering is strongly recommended for electrode protection of the pH meter. As an innovative filtering setup for cement-based materials, syringe filtering was introduced in this study because it is more economical and its operation is simpler compared to the other methods.
Fatigue cracking is an essential problem of asphalt concrete that contributes to pavement damage. Although stone matrix asphalt (SMA) has significantly provided resistance to rutting failure, its resistance to fatigue failure is yet to be fully addressed. The aim of this study is to evaluate the effect of crumb rubber modifier (CRM) on stiffness and fatigue properties of SMA mixtures at optimum binder content, using four different modification levels, namely, 6%, 8%, 10%, and 12% CRM by weight of the bitumen. The testing undertaken on the asphalt mix comprises the dynamic stiffness (indirect tensile test), dynamic creep (repeated load creep), and fatigue test (indirect tensile fatigue test) at temperature of 25°C. The indirect tensile fatigue test was conducted at three different stress levels (200, 300, and 400 kPa). Experimental results indicate that CRM-reinforced SMA mixtures exhibit significantly higher fatigue life compared to the mixtures without CRM. Further, higher correlation coefficient was obtained between the fatigue life and resilient modulus as compared to permanent strain; thus resilient modulus might be a more reliable indicator in evaluating the fatigue life of asphalt mixture.
The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC.