Displaying all 4 publications

Abstract:
Sort:
  1. Nurnberger JI, Koller DL, Jung J, Edenberg HJ, Foroud T, Guella I, et al.
    JAMA Psychiatry, 2014 Jun;71(6):657-64.
    PMID: 24718920 DOI: 10.1001/jamapsychiatry.2014.176
    IMPORTANCE: Genome-wide investigations provide systematic information regarding the neurobiology of psychiatric disorders.

    OBJECTIVE: To identify biological pathways that contribute to risk for bipolar disorder (BP) using genes with consistent evidence for association in multiple genome-wide association studies (GWAS).

    DATA SOURCES: Four independent data sets with individual genome-wide data available in July 2011 along with all data sets contributed to the Psychiatric Genomics Consortium Bipolar Group by May 2012. A prior meta-analysis was used as a source for brain gene expression data.

    STUDY SELECTION: The 4 published GWAS were included in the initial sample. All independent BP data sets providing genome-wide data in the Psychiatric Genomics Consortium were included as a replication sample.

    DATA EXTRACTION AND SYNTHESIS: We identified 966 genes that contained 2 or more variants associated with BP at P

  2. Kalman JL, Yoshida T, Andlauer TFM, Schulte EC, Adorjan K, Alda M, et al.
    Eur Arch Psychiatry Clin Neurosci, 2022 Dec;272(8):1611-1620.
    PMID: 35146571 DOI: 10.1007/s00406-021-01366-5
    Personality traits influence risk for suicidal behavior. We examined phenotype- and genotype-level associations between the Big Five personality traits and suicidal ideation and attempt in major depressive, bipolar and schizoaffective disorder, and schizophrenia patients (N = 3012) using fixed- and random-effects inverse variance-weighted meta-analyses. Suicidal ideations were more likely to be reported by patients with higher neuroticism and lower extraversion phenotypic scores, but showed no significant association with polygenic load for these personality traits. Our findings provide new insights into the association between personality and suicidal behavior across mental illnesses and suggest that the genetic component of personality traits is unlikely to have strong causal effects on suicidal behavior.
  3. Amare AT, Schubert KO, Hou L, Clark SR, Papiol S, Cearns M, et al.
    Mol Psychiatry, 2021 Jun;26(6):2457-2470.
    PMID: 32203155 DOI: 10.1038/s41380-020-0689-5
    Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLi+Gen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.
  4. Mullins N, Kang J, Campos AI, Coleman JRI, Edwards AC, Galfalvy H, et al.
    Biol Psychiatry, 2022 Feb 01;91(3):313-327.
    PMID: 34861974 DOI: 10.1016/j.biopsych.2021.05.029
    BACKGROUND: Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders.

    METHODS: We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors.

    RESULTS: Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged.

    CONCLUSIONS: Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links