Displaying all 3 publications

Abstract:
Sort:
  1. Khor HL, Liew SC, Zain JM
    Int J Biomed Imaging, 2016;2016:9583727.
    PMID: 26981111 DOI: 10.1155/2016/9583727
    With the advancement of technology in communication network, it facilitated digital medical images transmitted to healthcare professionals via internal network or public network (e.g., Internet), but it also exposes the transmitted digital medical images to the security threats, such as images tampering or inserting false data in the images, which may cause an inaccurate diagnosis and treatment. Medical image distortion is not to be tolerated for diagnosis purposes; thus a digital watermarking on medical image is introduced. So far most of the watermarking research has been done on single frame medical image which is impractical in the real environment. In this paper, a digital watermarking on multiframes medical images is proposed. In order to speed up multiframes watermarking processing time, a parallel watermarking processing on medical images processing by utilizing multicores technology is introduced. An experiment result has shown that elapsed time on parallel watermarking processing is much shorter than sequential watermarking processing.
  2. Khor HL, Liew SC, Zain JM
    J Digit Imaging, 2017 Jun;30(3):328-349.
    PMID: 28050716 DOI: 10.1007/s10278-016-9930-9
    Tampering on medical image will lead to wrong diagnosis and treatment, which is life-threatening; therefore, digital watermarking on medical image was introduced to protect medical image from tampering. Medical images are divided into region of interest (ROI) and region of non-interest (RONI). ROI is an area that has a significant impact on diagnosis, whereas RONI has less or no significance in diagnosis. This paper has proposed ROI-based tamper detection and recovery watermarking scheme (ROI-DR) that embeds ROI bit information into RONI least significant bits, which will be extracted later for authentication and recovery process. The experiment result has shown that the ROI-DR has achieved a good result in imperceptibility with peak signal-to-noise ratio (PSNR) values approximately 48 dB, it is robust against various kinds of tampering, and the tampered ROI was able to recover to its original form. Lastly, a comparative table with the previous research (TALLOR and TALLOR-RS watermarking schemes) has been derived, where these three watermarking schemes were tested under the same testing conditions and environment. The experiment result has shown that ROI-DR has achieved speed-up factors of 22.55 and 26.65 in relative to TALLOR and TALLOR-RS watermarking schemes, respectively.
  3. Chan YS, Cheah YH, Chong PZ, Khor HL, Teh WS, Khoo KS, et al.
    Pak J Pharm Sci, 2018 Jan;31(1):119-127.
    PMID: 29348093
    This study was conducted to investigate the antifungal potential and cytotoxicity of selected medicinal plants from Malaysia. The extracts from the stem of Cissus quadrangularis and the leaves of Asplenium nidus, Pereskia bleo, Persicaria odorata and Sauropus androgynus were assayed against six fungi using p-iodonitrotetrazolium-based on colorimetric broth microdilution method. All the plant extracts were found to be fungicidal against at least one type of fungus. The strongest fungicidal activity (minimum fungicidal concentration=0.16 mg/mL) were exhibited by the hexane extract of C. quadrangularis, the hexane, chloroform, ethanol and methanol extracts of P. bleo, the hexane and ethyl acetate extracts of P. odorata, and the water extract of A. nidus. In terms of cytotoxicity on the African monkey kidney epithelial (Vero) cells, the chloroform extract of P. odorata produced the lowest 50% cytotoxic concentration (100.3 ± 4.2 μ g/mL). In contrast, none of the water extracts from the studied plants caused significant toxicity on the cells. The water extract of A. nidus warrants further investigation since it showed the strongest fungicidal activity and the highest total activity (179.22 L/g) against Issatchenkia orientalis, and did not cause any toxicity to the Vero cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links