Displaying all 11 publications

Abstract:
Sort:
  1. Kirubakaran R, Chee Jia T, Mahamad Aris N
    Asian Pac J Cancer Prev, 2017 01 01;18(1):115-120.
    PMID: 28240018
    Background: Breast cancer is the commonest cancer among women worldwide. About one in nineteen women in
    Malaysia are at risk, compared to one in eight in Europe and the United States. The objectives of this study were: (1) to
    assess patients’ knowledge on risk factors, symptoms and methods of screening of breast cancer; and (2) to determine
    their perceptions towards the disease treatment outcomes. Methods: A cross-sectional survey using a validated selfadministered
    questionnaire was conducted among 119 consecutive surgical female patients admitted from 1st of
    September to 8th of October 2015 in Hospital Sultan Abdul Halim, Kedah. Data were analyzed using General linear
    regression and Spearman’s correlation with Statistical Package for Social Science (SPSS) version 20. Results: Mean (SD)
    age was 40.6 (15.1) years and majority of the patients were Malay (106, 89.1%). Mean scores for general knowledge,
    risk factors and symptoms of breast cancer were 50.2 (24.0%), 43.0 (22.9%) and 64.4 (28.4%) respectively. Mean
    total knowledge score was 52.1(19.7%). 80 (67.2%) and 55 (46.2%) patients were aware of breast self-examination
    and clinical breast examination recommendations, respectively. Generally, patients had positive perceptions towards
    breast cancer treatment outcomes. However, majority (59.7%) considered that it would be a long and painful process.
    Knowledge was significantly better among married women with spouses (p=0.046), those with personal history of
    breast cancer (p=0.022) and with monthly personal income (p=0.001) with the coefficient of determination, R2=0.16.
    Spearman’s correlation test showed a significant positive relationship between monthly personal income and breast
    cancer awareness (r = 0.343, p <0.001). Conclusion: Awareness on breast cancer among our patients was average. Thus,
    there is a need for more awareness programs to educate women about breast cancer and promote its early detection.
  2. Kirubakaran R, Stocker SL, Hennig S, Day RO, Carland JE
    Clin Pharmacokinet, 2020 11;59(11):1357-1392.
    PMID: 32783100 DOI: 10.1007/s40262-020-00922-x
    BACKGROUND AND OBJECTIVES: Numerous population pharmacokinetic (PK) models of tacrolimus in adult transplant recipients have been published to characterize tacrolimus PK and facilitate dose individualization. This study aimed to (1) investigate clinical determinants influencing tacrolimus PK, and (2) identify areas requiring additional research to facilitate the use of population PK models to guide tacrolimus dosing decisions.

    METHODS: The MEDLINE and EMBASE databases, as well as the reference lists of all articles, were searched to identify population PK models of tacrolimus developed from adult transplant recipients published from the inception of the databases to 29 February 2020.

    RESULTS: Of the 69 studies identified, 55% were developed from kidney transplant recipients and 30% from liver transplant recipients. Most studies (91%) investigated the oral immediate-release formulation of tacrolimus. Few studies (17%) explained the effect of drug-drug interactions on tacrolimus PK. Only 35% of the studies performed an external evaluation to assess the generalizability of the models. Studies related variability in tacrolimus whole blood clearance among transplant recipients to either cytochrome P450 (CYP) 3A5 genotype (41%), days post-transplant (30%), or hematocrit (29%). Variability in the central volume of distribution was mainly explained by body weight (20% of studies).

    CONCLUSION: The effect of clinically significant drug-drug interactions and different formulations and brands of tacrolimus should be considered for any future tacrolimus population PK model development. Further work is required to assess the generalizability of existing models and identify key factors that influence both initial and maintenance doses of tacrolimus, particularly in heart and lung transplant recipients.

  3. Kirubakaran R, Hennig S, Maslen B, Day RO, Carland JE, Stocker SL
    Br J Clin Pharmacol, 2021 Sep 23.
    PMID: 34558092 DOI: 10.1111/bcp.15091
    BACKGROUND AND AIM: Identification of the most appropriate population pharmacokinetic model-based Bayesian estimation is required prior to its implementation in routine clinical practice to inform tacrolimus dosing decisions. This study aimed to determine the predictive performances of relevant population pharmacokinetic models of tacrolimus developed from various solid organ transplant recipient populations in adult heart transplant recipients, stratified based on concomitant azole antifungal use. Concomitant azole antifungal therapy alters tacrolimus pharmacokinetics substantially necessitating dose adjustments.

    METHODS: Population pharmacokinetic models of tacrolimus were selected (n=17) for evaluation from a recent systematic review. The models were transcribed and implemented in NONMEM version 7.4.3. Data from 85 heart transplant recipients (2387 tacrolimus concentrations) administered the oral immediate-release formulation of tacrolimus (Prograf®) were obtained up to 391 days post-transplant. The performance of each model was evaluated using (1) prediction-based assessment (bias and imprecision) of the individual predicted tacrolimus concentration of the fourth dosing occasion (MAXEVAL=0, FOCE-I) from 1-3 prior dosing occasions and (2) simulation-based assessment (prediction-corrected visual predictive check, pcVPC). Both assessments were stratified based on concomitant azole antifungal use.

    RESULTS: Regardless of the number of prior dosing occasions (1-3) and concomitant azole antifungal use, all models demonstrated unacceptable individual predicted tacrolimus concentration of the fourth dosing occasion (n=152). The pcVPC graphics indicated these models inadequately predicted observed tacrolimus concentrations.

    CONCLUSIONS: All models evaluated were unable to adequately describe tacrolimus pharmacokinetics in adult heart transplant recipients included in this study. Further work is required to describe tacrolimus pharmacokinetics for our heart transplant recipient cohort.

  4. Kirubakaran R, Stocker SL, Carlos L, Day RO, Carland JE
    Ther Drug Monit, 2021 Dec 01;43(6):736-746.
    PMID: 34126624 DOI: 10.1097/FTD.0000000000000909
    BACKGROUND: Therapeutic drug monitoring is recommended to guide tacrolimus dosing because of its narrow therapeutic window and considerable pharmacokinetic variability. This study assessed tacrolimus dosing and monitoring practices in heart transplant recipients and evaluated the predictive performance of a Bayesian forecasting software using a renal transplant-derived tacrolimus model to predict tacrolimus concentrations.

    METHODS: A retrospective audit of heart transplant recipients (n = 87) treated with tacrolimus was performed. Relevant data were collected from the time of transplant to discharge. The concordance of tacrolimus dosing and monitoring according to hospital guidelines was assessed. The observed and software-predicted tacrolimus concentrations (n = 931) were compared for the first 3 weeks of oral immediate-release tacrolimus (Prograf) therapy, and the predictive performance (bias and imprecision) of the software was evaluated.

    RESULTS: The majority (96%) of initial oral tacrolimus doses were guideline concordant. Most initial intravenous doses (93%) were lower than the guideline recommendations. Overall, 36% of initial tacrolimus doses were administered to transplant recipients with an estimated glomerular filtration rate of <60 mL/min/1.73 m despite recommendations to delay the commencement of therapy. Of the tacrolimus concentrations collected during oral therapy (n = 1498), 25% were trough concentrations obtained at steady-state. The software displayed acceptable predictions of tacrolimus concentration from day 12 (bias: -6%; 95%confidence interval, -11.8 to 2.5; imprecision: 16%; 95% confidence interval, 8.7-24.3) of therapy.

    CONCLUSIONS: Tacrolimus dosing and monitoring were discordant with the guidelines. The Bayesian forecasting software was suitable for guiding tacrolimus dosing after 11 days of therapy in heart transplant recipients. Understanding the factors contributing to the variability in tacrolimus pharmacokinetics immediately after transplant may help improve software predictions.

  5. Kirubakaran R, Uster DW, Hennig S, Carland JE, Day RO, Wicha SG, et al.
    Br J Clin Pharmacol, 2023 Mar;89(3):1162-1175.
    PMID: 36239542 DOI: 10.1111/bcp.15566
    AIM: Existing tacrolimus population pharmacokinetic models are unsuitable for guiding tacrolimus dosing in heart transplant recipients. This study aimed to develop and evaluate a population pharmacokinetic model for tacrolimus in heart transplant recipients that considers the tacrolimus-azole antifungal interaction.

    METHODS: Data from heart transplant recipients (n = 87) administered the oral immediate-release formulation of tacrolimus (Prograf®) were collected. Routine drug monitoring data, principally trough concentrations, were used for model building (n = 1099). A published tacrolimus model was used to inform the estimation of Ka , V2 /F, Q/F and V3 /F. The effect of concomitant azole antifungal use on tacrolimus CL/F was quantified. Fat-free mass was implemented as a covariate on CL/F, V2 /F, V3 /F and Q/F on an allometry scale. Subsequently, stepwise covariate modelling was performed. Significant covariates influencing tacrolimus CL/F were included in the final model. Robustness of the final model was confirmed using prediction-corrected visual predictive check (pcVPC). The final model was externally evaluated for prediction of tacrolimus concentrations of the fourth dosing occasion (n = 87) from one to three prior dosing occasions.

    RESULTS: Concomitant azole antifungal therapy reduced tacrolimus CL/F by 80%. Haematocrit (∆OFV = -44, P 

  6. Kirubakaran R, Singh RM, Carland JE, Day RO, Stocker SL
    Ther Drug Monit, 2024 Aug 01;46(4):434-445.
    PMID: 38723160 DOI: 10.1097/FTD.0000000000001210
    BACKGROUND: The applicability of currently available tacrolimus population pharmacokinetic models in guiding dosing for lung transplant recipients is unclear. In this study, the predictive performance of relevant tacrolimus population pharmacokinetic models was evaluated for adult lung transplant recipients.

    METHODS: Data from 43 lung transplant recipients (1021 tacrolimus concentrations) administered an immediate-release oral formulation of tacrolimus were used to evaluate the predictive performance of 17 published population pharmacokinetic models for tacrolimus. Data were collected from immediately after transplantation up to 90 days after transplantation. Model performance was evaluated using (1) prediction-based assessments (bias and imprecision) of individual predicted tacrolimus concentrations at the fourth dosing based on 1 to 3 previous dosings and (2) simulation-based assessment (prediction-corrected visual predictive check; pcVPC). Both assessments were stratified based on concomitant azole antifungal use. Model performance was clinically acceptable if the bias was within ±20%, imprecision was ≤20%, and the 95% confidence interval of bias crossed zero.

    RESULTS: In the presence of concomitant antifungal therapy, no model showed acceptable performance in predicting tacrolimus concentrations at the fourth dosing (n = 33), and pcVPC plots displayed poor model fit to the data set. However, this fit slightly improved in the absence of azole antifungal use, where 4 models showed acceptable performance in predicting tacrolimus concentrations at the fourth dosing (n = 33).

    CONCLUSIONS: Although none of the evaluated models were appropriate in guiding tacrolimus dosing in lung transplant recipients receiving concomitant azole antifungal therapy, 4 of these models displayed potential applicability in guiding dosing in recipients not receiving concomitant azole antifungal therapy. However, further model refinement is required before the widespread implementation of such models in clinical practice.

  7. Korula P, Alexander H, John JS, Kirubakaran R, Singh B, Tharyan P, et al.
    Cochrane Database Syst Rev, 2024 Feb 05;2(2):CD015219.
    PMID: 38314855 DOI: 10.1002/14651858.CD015219.pub2
    BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to challenge the health workforce and societies worldwide. Favipiravir was suggested by some experts to be effective and safe to use in COVID-19. Although this drug has been evaluated in randomized controlled trials (RCTs), it is still unclear if it has a definite role in the treatment of COVID-19.

    OBJECTIVES: To assess the effects of favipiravir compared to no treatment, supportive treatment, or other experimental antiviral treatment in people with acute COVID-19.

    SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, the World Health Organization (WHO) COVID-19 Global literature on coronavirus disease, and three other databases, up to 18 July 2023.

    SELECTION CRITERIA: We searched for RCTs evaluating the efficacy of favipiravir in treating people with COVID-19.

    DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures for data collection and analysis. We used the GRADE approach to assess the certainty of evidence for each outcome.

    MAIN RESULTS: We included 25 trials that randomized 5750 adults (most under 60 years of age). The trials were conducted in Bahrain, Brazil, China, India, Iran, Kuwait, Malaysia, Mexico, Russia, Saudi Arabia, Thailand, the UK, and the USA. Most participants were hospitalized with mild to moderate disease (89%). Twenty-two of the 25 trials investigated the role of favipiravir compared to placebo or standard of care, whilst lopinavir/ritonavir was the comparator in two trials, and umifenovir in one trial. Most trials (24 of 25) initiated favipiravir at 1600 mg or 1800 mg twice daily for the first day, followed by 600 mg to 800 mg twice a day. The duration of treatment varied from five to 14 days. We do not know whether favipiravir reduces all-cause mortality at 28 to 30 days, or in-hospital (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.49 to 1.46; 11 trials, 3459 participants; very low-certainty evidence). We do not know if favipiravir reduces the progression to invasive mechanical ventilation (RR 0.86, 95% CI 0.68 to 1.09; 8 trials, 1383 participants; very low-certainty evidence). Favipiravir may make little to no difference in the need for admission to hospital (if ambulatory) (RR 1.04, 95% CI 0.44 to 2.46; 4 trials, 670 participants; low-certainty evidence). We do not know if favipiravir reduces the time to clinical improvement (defined as time to a 2-point reduction in patients' admission status on the WHO's ordinal scale) (hazard ratio (HR) 1.13, 95% CI 0.69 to 1.83; 4 trials, 721 participants; very low-certainty evidence). Favipiravir may make little to no difference to the progression to oxygen therapy (RR 1.20, 95% CI 0.83 to 1.75; 2 trials, 543 participants; low-certainty evidence). Favipiravir may lead to an overall increased incidence of adverse events (RR 1.27, 95% CI 1.05 to 1.54; 18 trials, 4699 participants; low-certainty evidence), but may result in little to no difference inserious adverse eventsattributable to the drug (RR 1.04, 95% CI 0.76 to 1.42; 12 trials, 3317 participants; low-certainty evidence).

    AUTHORS' CONCLUSIONS: The low- to very low-certainty evidence means that we do not know whether favipiravir is efficacious in people with COVID-19 illness, irrespective of severity or admission status. Treatment with favipiravir may result in an overall increase in the incidence of adverse events but may not result in serious adverse events.

  8. Budamagunta V, Shameem N, Irusappan S, Parray JA, Thomas M, Marimuthu S, et al.
    Environ Res, 2023 Feb 15;219:114997.
    PMID: 36529326 DOI: 10.1016/j.envres.2022.114997
    Heavy metal toxicity affects aquatic plants and animals, disturbing biodiversity and ecological balance causing bioaccumulation of heavy metals. Industrialization and urbanization are inevitable in modern-day life, and control and detoxification methods need to be accorded to meet the hazardous environment. Microorganisms and plants have been widely used in the bioremediation of heavy metals. Sporosarcina pasteurii, a gram-positive bacterium that is widely known for its calcite precipitation property in bio-cementing applications has been explored in the study for its metal tolerance ability for the first time. S. pasteurii SRMNP1 (KF214757) can tolerate silver stress to form nanoparticles and can remediate multiple heavy metals to promote the growth of various plants. This astounding property of the isolate warranted extensive examinations to comprehend the physiological changes during an external heavy metal stress condition. The present study aimed to understand various physiological responses occurring in S. pasteuriiSRMNP1 during the metal tolerance phenomenon using electron microscopy. The isolate was subjected to heavy metal stress, and a transmission electron microscope examination was used to analyze the physiological changes in bacteria to evade the metal stress. S. pasteurii SRMNP1 was tolerant against a wide range of heavy metal ions and can withstand a broad pH range (5-9). Transmission Electron Microscopy (TEM) examination of S. pasteurii SRMNP1 followed by 5 mM nickel sulfate treatment revealed the presence of nanovesicles encapsulating nanosized particles in intra and extracellular spaces. This suggests that the bacteria evade the metal stress by converting the metal ions into nanosized particles and encapsulating them within nanovesicles to efflux them through the vesicle budding mechanism. Moreover, the TEM images revealed an excessive secretion of extracellular polymeric substances by the strain to discharge the metal particles outside the bacterial system. S. pasteurii can be foreseen as an effective bioremediation agent with the potential to produce nanosized particles, nanovesicles, and extracellular polymeric substances. This study provides physiological evidence that, besides calcium precipitation applications, S. pasteurii can further be explored for its multidimensional roles in the fields of drug delivery and environmental engineering.
  9. Nguyen TA, Kirubakaran R, Schultz HB, Wong S, Reuter SE, McMullan B, et al.
    Clin Chem, 2023 Jun 01;69(6):637-648.
    PMID: 37116191 DOI: 10.1093/clinchem/hvad036
    BACKGROUND: Therapeutic drug monitoring (TDM) of aminoglycosides and vancomycin is used to prevent oto- and nephrotoxicity in neonates. Analytical and nonanalytical factors potentially influence dosing recommendations. This study aimed to determine the impact of analytical variation (imprecision and bias) and nonanalytical factors (accuracy of drug administration time, use of non-trough concentrations, biological variation, and dosing errors) on neonatal antimicrobial dosing recommendations.

    METHODS: Published population pharmacokinetic models and the Australasian Neonatal Medicines Formulary were used to simulate antimicrobial concentration-time profiles in a virtual neonate population. Laboratory quality assurance data were used to quantify analytical variation in antimicrobial measurement methods used in clinical practice. Guideline-informed dosing recommendations based on drug concentrations were applied to compare the impact of analytical variation and nonanalytical factors on antimicrobial dosing.

    RESULTS: Analytical variation caused differences in subsequent guideline-informed dosing recommendations in 9.3-12.1% (amikacin), 16.2-19.0% (tobramycin), 12.2-45.8% (gentamicin), and 9.6-19.5% (vancomycin) of neonates. For vancomycin, inaccuracies in drug administration time (45.6%), use of non-trough concentrations (44.7%), within-subject biological variation (38.2%), and dosing errors (27.5%) were predicted to result in more dosing discrepancies than analytical variation (12.5%). Using current analytical performance specifications, tolerated dosing discrepancies would be up to 14.8% (aminoglycosides) and 23.7% (vancomycin).

    CONCLUSIONS: Although analytical variation can influence neonatal antimicrobial dosing recommendations, nonanalytical factors are more influential. These result in substantial variation in subsequent dosing of antimicrobials, risking inadvertent under- or overexposure. Harmonization of measurement methods and improved patient management systems may reduce the impact of analytical and nonanalytical factors on neonatal antimicrobial dosing.

  10. Anumula L, Ramesh S, Kolaparthi VSK, Kirubakaran R, Karobari MI, Arora S, et al.
    Materials (Basel), 2022 Aug 17;15(16).
    PMID: 36013786 DOI: 10.3390/ma15165650
    BACKGROUND: The role of endogenous Matrix Metallo Proteinases in resin dentin bond deterioration over time has been well documented. The present study aimed to systematically review the literature; in vitro and ex vivo studies that assessed the outcomes of natural cross-linkers for immediate and long-term tensile bond strength were included.

    METHODS: The manuscript search was carried out in six electronic databases-PubMed/MEDLINE, LILACS, SciELO, Cochrane, Web of Science and DOAJ, without publication year limits. Only manuscripts in English (including the translated articles) were selected, and the last search was performed in December 2020. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was followed.

    RESULTS: From the 128 potentially eligible studies, 48 full-text articles were assessed for eligibility. After eligibility assessment and exclusions, 14 studies were considered for systematic review and seven studies for meta-analysis. Amongst the selected studies for meta-analysis, three had a medium and four had a low risk of bias.

    CONCLUSIONS: It was evidenced by the available data that Proanthocyanidin is the most efficient natural cross-linker to date, in preserving the bond strength even after ageing.

  11. Babar ZU, Hassali MA, Shyong TL, Hin TK, Cien CS, Bin LS, et al.
    J Young Pharm, 2012 Apr;4(2):108-13.
    PMID: 22754263 DOI: 10.4103/0975-1483.96625
    The objective of this study was to evaluate consumers' perceptions regarding "modern medicines" in Penang, Malaysia. To conduct this exploratory study, qualitative techniques were used. Consumers more than 19 years of age and could speak English, who had visited a pharmacy in the last 30 days, were included from the four major areas of Penang. Eighteen interviews were conducted until the point of saturation. The interviews were audio-taped and then transcribed verbatim for thematic content analysis. Many consumers correctly identified the major characteristics and properties of modern medicines; however, others raised doubts regarding the safety, quality and efficacy of "modern medicines". There were many misconceptions such as "all modern medicines can cause dependence", traditional medicines are completely "free of side-effects" and "Western medicines cure while Chinese medicines don't". Color was also considered a strong determinant of the safety and characteristics of a medicine. Regarding consumers' "medicine information seeking behavior", many consumers would seek information from doctors and pharmacists; however, there were others, who would look for books, or get it from the internet and friends. Of concern many consumers emphasized that while "self-searching for drug information" they would only look for side-effects. Misconceptions regarding medicine-taking behavior, medicine use and compliance were also identified. Though several consumers complied with the medicine-taking instructions, many reported that they would stop taking medicines, once they feel better. Though many consumers correctly identified the characteristics of "modern medicines", misconceptions regarding "medicine information sources and "medicine-taking behavior" were rampant. The situation demands corrective actions including community-oriented educational campaigns to improve "medicine use" in the society.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links