Displaying all 3 publications

Abstract:
Sort:
  1. Kavitha N, Noordin R, Kit-Lam C, Sasidharan S
    Molecules, 2012 Aug 02;17(8):9207-19.
    PMID: 22858841 DOI: 10.3390/molecules17089207
    The inhibitory effect of active fractions of Eurycoma longifolia (E. longifolia) root, namely TAF355 and TAF401, were evaluated against Toxoplasma gondii (T. gondii). In our previous study, we demonstrated that T. gondii was susceptible to TAF355 and TAF401 with IC₅₀ values of 1.125 µg/mL and 1.375 µg/mL, respectively. Transmission (TEM) and scanning electron microscopy (SEM) observations were used to study the in situ antiparasitic activity at the IC₅₀ value. Clindamycin was used as positive control. SEM examination revealed cell wall alterations with formation of invaginations followed by completely collapsed cells compared to the normal T. gondii cells in response to the fractions. The main abnormality noted via TEM study was decreased cytoplasmic volume, leaving a state of structural disorganization within the cell cytoplasm and destruction of its organelles as early as 12 h of treatment, which indicated of rapid antiparasitic activity of the E. longifolia fractions. The significant antiparasitic activity shown by the TAF355 and TAF401 active fractions of E. longifolia suggests their potential as new anti-T. gondii agent candidates.
  2. Al-Salahi OS, Ji D, Majid AM, Kit-Lam C, Abdullah WZ, Zaki A, et al.
    PLoS One, 2014;9(1):e83818.
    PMID: 24409284 DOI: 10.1371/journal.pone.0083818
    Eurycoma longifolia Jack has been widely used in traditional medicine for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities. Its anticancer activity has also been recently reported on different solid tumors, however no anti-leukemic activity of this plant has been reported. Thus the present study assesses the in vitro and in vivo anti-proliferative and apoptotic potentials of E. longifolia on K-562 leukemic cell line. The K-562 cells (purchased from ATCC) were isolated from patients with chronic myelocytic leukemia (CML) were treated with the various fractions (TAF273, F3 and F4) of E. longifolia root methanolic extract at various concentrations and time intervals and the anti-proliferative activity assessed by MTS assay. Flow cytometry was used to assess the apoptosis and cell cycle arrest. Nude mice injected subcutaneously with 10(7) K-562 cells were used to study the anti-leukemic activity of TAF273 in vivo. TAF273, F3 and F4 showed various degrees of growth inhibition with IC50 values of 19, 55 and 62 µg/ml, respectively. TAF273 induced apoptosis in a dose and time dependent manner. TAF273 arrested cell cycle at G1 and S phases. Intraperitoneal administration of TAF273 (50 mg/kg) resulted in a significant growth inhibition of subcutaneous tumor in TAF273-treated mice compared with the control mice (P = 0.024). TAF273 shows potent anti-proliferative activity in vitro and in vivo models of CML and therefore, justifies further efforts to define more clearly the potential benefits of using TAF273 as a novel therapeutic strategy for CML management.
  3. Al-Salahi OS, Kit-Lam C, Majid AM, Al-Suede FS, Mohammed Saghir SA, Abdullah WZ, et al.
    Microvasc Res, 2013 Nov;90:30-9.
    PMID: 23899415 DOI: 10.1016/j.mvr.2013.07.007
    Targeting angiogenesis could be an excellent strategy to combat angiogenesis-dependent pathophysiological conditions such as cancer, rheumatoid arthritis, obesity, systemic lupus erythematosus, psoriasis, proliferative retinopathy and atherosclerosis. Recently a number of clinical investigations are being undertaken to assess the potential therapeutic application of various anti-angiogenic agents. Many of these angiogenesis inhibitors are directed against the functions of endothelial cells, which are considered as the building blocks of blood vessels. Similarly, roots of a traditional medicinal plant, Eurycoma longifolia, can be used as an alternative treatment to prevent and treat the angiogenesis-related diseases. In the present study, antiangiogenic potential of partially purified quassinoid-rich fraction (TAF273) of E. longifolia root extract was evaluated using ex vivo and in vivo angiogenesis models and the anti-angiogenic efficacy of TAF273 was investigated in human umbilical vein endothelial cells (HUVEC). TAF273 caused significant suppression in sprouting of microvessels in rat aorta with IC50 11.5μg/ml. TAF273 (50μg/ml) showed remarkable inhibition (63.13%) of neovascularization in chorioallantoic membrane of chick embryo. Tumor histology also revealed marked reduction in extent of vascularization. In vitro, TAF273 significantly inhibited the major angiogenesis steps such as proliferation, migration and differentiation of HUVECs. Phytochemical analysis revealed high content of quassinoids in TAF273. Specially, HPLC characterization showed that TAF273 is enriched with eurycomanone, 13α(21)-epoxyeurycomanone and eurycomanol. These results demonstrated that the antiangiogenic activity of TAF273 may be due to its inhibitory effect on endothelial cell proliferation, differentiation and migration which could be attributed to the high content of quassinoids in E. longifolia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links