Displaying all 10 publications

Abstract:
Sort:
  1. Acharya UR, Bhat S, Koh JEW, Bhandary SV, Adeli H
    Comput Biol Med, 2017 Sep 01;88:72-83.
    PMID: 28700902 DOI: 10.1016/j.compbiomed.2017.06.022
    Glaucoma is an optic neuropathy defined by characteristic damage to the optic nerve and accompanying visual field deficits. Early diagnosis and treatment are critical to prevent irreversible vision loss and ultimate blindness. Current techniques for computer-aided analysis of the optic nerve and retinal nerve fiber layer (RNFL) are expensive and require keen interpretation by trained specialists. Hence, an automated system is highly desirable for a cost-effective and accurate screening for the diagnosis of glaucoma. This paper presents a new methodology and a computerized diagnostic system. Adaptive histogram equalization is used to convert color images to grayscale images followed by convolution of these images with Leung-Malik (LM), Schmid (S), and maximum response (MR4 and MR8) filter banks. The basic microstructures in typical images are called textons. The convolution process produces textons. Local configuration pattern (LCP) features are extracted from these textons. The significant features are selected using a sequential floating forward search (SFFS) method and ranked using the statistical t-test. Finally, various classifiers are used for classification of images into normal and glaucomatous classes. A high classification accuracy of 95.8% is achieved using six features obtained from the LM filter bank and the k-nearest neighbor (kNN) classifier. A glaucoma integrative index (GRI) is also formulated to obtain a reliable and effective system.
  2. Acharya UR, Faust O, Ciaccio EJ, Koh JEW, Oh SL, Tan RS, et al.
    Comput Methods Programs Biomed, 2019 Jul;175:163-178.
    PMID: 31104705 DOI: 10.1016/j.cmpb.2019.04.018
    BACKGROUND AND OBJECTIVE: Complex fractionated atrial electrograms (CFAE) may contain information concerning the electrophysiological substrate of atrial fibrillation (AF); therefore they are of interest to guide catheter ablation treatment of AF. Electrogram signals are shaped by activation events, which are dynamical in nature. This makes it difficult to establish those signal properties that can provide insight into the ablation site location. Nonlinear measures may improve information. To test this hypothesis, we used nonlinear measures to analyze CFAE.

    METHODS: CFAE from several atrial sites, recorded for a duration of 16 s, were acquired from 10 patients with persistent and 9 patients with paroxysmal AF. These signals were appraised using non-overlapping windows of 1-, 2- and 4-s durations. The resulting data sets were analyzed with Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA). The data was also quantified via entropy measures.

    RESULTS: RQA exhibited unique plots for persistent versus paroxysmal AF. Similar patterns were observed to be repeated throughout the RPs. Trends were consistent for signal segments of 1 and 2 s as well as 4 s in duration. This was suggestive that the underlying signal generation process is also repetitive, and that repetitiveness can be detected even in 1-s sequences. The results also showed that most entropy metrics exhibited higher measurement values (closer to equilibrium) for persistent AF data. It was also found that Determinism (DET), Trapping Time (TT), and Modified Multiscale Entropy (MMSE), extracted from signals that were acquired from locations at the posterior atrial free wall, are highly discriminative of persistent versus paroxysmal AF data.

    CONCLUSIONS: Short data sequences are sufficient to provide information to discern persistent versus paroxysmal AF data with a significant difference, and can be useful to detect repeating patterns of atrial activation.

  3. Koh JEW, Ng EYK, Bhandary SV, Hagiwara Y, Laude A, Acharya UR
    Comput Biol Med, 2018 01 01;92:204-209.
    PMID: 29227822 DOI: 10.1016/j.compbiomed.2017.11.019
    Untreated age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma may lead to irreversible vision loss. Hence, it is essential to have regular eye screening to detect these eye diseases at an early stage and to offer treatment where appropriate. One of the simplest, non-invasive and cost-effective techniques to screen the eyes is by using fundus photo imaging. But, the manual evaluation of fundus images is tedious and challenging. Further, the diagnosis made by ophthalmologists may be subjective. Therefore, an objective and novel algorithm using the pyramid histogram of visual words (PHOW) and Fisher vectors is proposed for the classification of fundus images into their respective eye conditions (normal, AMD, DR, and glaucoma). The proposed algorithm extracts features which are represented as words. These features are built and encoded into a Fisher vector for classification using random forest classifier. This proposed algorithm is validated with both blindfold and ten-fold cross-validation techniques. An accuracy of 90.06% is achieved with the blindfold method, and highest accuracy of 96.79% is obtained with ten-fold cross-validation. The highest classification performance of our system shows the potential of deploying it in polyclinics to assist healthcare professionals in their initial diagnosis of the eye. Our developed system can reduce the workload of ophthalmologists significantly.
  4. Acharya UR, Mookiah MRK, Koh JEW, Tan JH, Bhandary SV, Rao AK, et al.
    Comput Biol Med, 2017 05 01;84:59-68.
    PMID: 28343061 DOI: 10.1016/j.compbiomed.2017.03.016
    The cause of diabetic macular edema (DME) is due to prolonged and uncontrolled diabetes mellitus (DM) which affects the vision of diabetic subjects. DME is graded based on the exudate location from the macula. It is clinically diagnosed using fundus images which is tedious and time-consuming. Regular eye screening and subsequent treatment may prevent the vision loss. Hence, in this work, a hybrid system based on Radon transform (RT), discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed for an automated detection of DME. The fundus images are subjected to RT to obtain sinograms and DWT is applied on these sinograms to extract wavelet coefficients (approximate, horizontal, vertical and diagonal). DCT is applied on approximate coefficients to obtain 2D-DCT coefficients. Further, these coefficients are converted into 1D vector by arranging the coefficients in zig-zag manner. This 1D signal is subjected to locality sensitive discriminant analysis (LSDA). Finally, various supervised classifiers are used to classify the three classes using significant features. Our proposed technique yielded a classification accuracy of 100% and 97.01% using two and seven significant features for private and public (MESSIDOR) databases respectively. Also, a maculopathy index is formulated with two significant parameters to discriminate the three groups distinctly using a single integer. Hence, our obtained results suggest that this system can be used as an eye screening tool for diabetic subjects for DME.
  5. Hagiwara Y, Koh JEW, Tan JH, Bhandary SV, Laude A, Ciaccio EJ, et al.
    Comput Methods Programs Biomed, 2018 Oct;165:1-12.
    PMID: 30337064 DOI: 10.1016/j.cmpb.2018.07.012
    BACKGROUND AND OBJECTIVES: Glaucoma is an eye condition which leads to permanent blindness when the disease progresses to an advanced stage. It occurs due to inappropriate intraocular pressure within the eye, resulting in damage to the optic nerve. Glaucoma does not exhibit any symptoms in its nascent stage and thus, it is important to diagnose early to prevent blindness. Fundus photography is widely used by ophthalmologists to assist in diagnosis of glaucoma and is cost-effective.

    METHODS: The morphological features of the disc that is characteristic of glaucoma are clearly seen in the fundus images. However, manual inspection of the acquired fundus images may be prone to inter-observer variation. Therefore, a computer-aided detection (CAD) system is proposed to make an accurate, reliable and fast diagnosis of glaucoma based on the optic nerve features of fundus imaging. In this paper, we reviewed existing techniques to automatically diagnose glaucoma.

    RESULTS: The use of CAD is very effective in the diagnosis of glaucoma and can assist the clinicians to alleviate their workload significantly. We have also discussed the advantages of employing state-of-art techniques, including deep learning (DL), when developing the automated system. The DL methods are effective in glaucoma diagnosis.

    CONCLUSIONS: Novel DL algorithms with big data availability are required to develop a reliable CAD system. Such techniques can be employed to diagnose other eye diseases accurately.

  6. Koh JEW, Acharya UR, Hagiwara Y, Raghavendra U, Tan JH, Sree SV, et al.
    Comput Biol Med, 2017 05 01;84:89-97.
    PMID: 28351716 DOI: 10.1016/j.compbiomed.2017.03.008
    Vision is paramount to humans to lead an active personal and professional life. The prevalence of ocular diseases is rising, and diseases such as glaucoma, Diabetic Retinopathy (DR) and Age-related Macular Degeneration (AMD) are the leading causes of blindness in developed countries. Identifying these diseases in mass screening programmes is time-consuming, labor-intensive and the diagnosis can be subjective. The use of an automated computer aided diagnosis system will reduce the time taken for analysis and will also reduce the inter-observer subjective variabilities in image interpretation. In this work, we propose one such system for the automatic classification of normal from abnormal (DR, AMD, glaucoma) images. We had a total of 404 normal and 1082 abnormal fundus images in our database. As the first step, 2D-Continuous Wavelet Transform (CWT) decomposition on the fundus images of two classes was performed. Subsequently, energy features and various entropies namely Yager, Renyi, Kapoor, Shannon, and Fuzzy were extracted from the decomposed images. Then, adaptive synthetic sampling approach was applied to balance the normal and abnormal datasets. Next, the extracted features were ranked according to the significances using Particle Swarm Optimization (PSO). Thereupon, the ranked and selected features were used to train the random forest classifier using stratified 10-fold cross validation. Overall, the proposed system presented a performance rate of 92.48%, and a sensitivity and specificity of 89.37% and 95.58% respectively using 15 features. This novel system shows promise in detecting abnormal fundus images, and hence, could be a valuable adjunct eye health screening tool that could be employed in polyclinics, and thereby reduce the workload of specialists at hospitals.
  7. Acharya UR, Raghavendra U, Koh JEW, Meiburger KM, Ciaccio EJ, Hagiwara Y, et al.
    Comput Methods Programs Biomed, 2018 Nov;166:91-98.
    PMID: 30415722 DOI: 10.1016/j.cmpb.2018.10.006
    BACKGROUND AND OBJECTIVE: Liver fibrosis is a type of chronic liver injury that is characterized by an excessive deposition of extracellular matrix protein. Early detection of liver fibrosis may prevent further growth toward liver cirrhosis and hepatocellular carcinoma. In the past, the only method to assess liver fibrosis was through biopsy, but this examination is invasive, expensive, prone to sampling errors, and may cause complications such as bleeding. Ultrasound-based elastography is a promising tool to measure tissue elasticity in real time; however, this technology requires an upgrade of the ultrasound system and software. In this study, a novel computer-aided diagnosis tool is proposed to automatically detect and classify the various stages of liver fibrosis based upon conventional B-mode ultrasound images.

    METHODS: The proposed method uses a 2D contourlet transform and a set of texture features that are efficiently extracted from the transformed image. Then, the combination of a kernel discriminant analysis (KDA)-based feature reduction technique and analysis of variance (ANOVA)-based feature ranking technique was used, and the images were then classified into various stages of liver fibrosis.

    RESULTS: Our 2D contourlet transform and texture feature analysis approach achieved a 91.46% accuracy using only four features input to the probabilistic neural network classifier, to classify the five stages of liver fibrosis. It also achieved a 92.16% sensitivity and 88.92% specificity for the same model. The evaluation was done on a database of 762 ultrasound images belonging to five different stages of liver fibrosis.

    CONCLUSIONS: The findings suggest that the proposed method can be useful to automatically detect and classify liver fibrosis, which would greatly assist clinicians in making an accurate diagnosis.

  8. Acharya UR, Ng WL, Rahmat K, Sudarshan VK, Koh JEW, Tan JH, et al.
    Comput Biol Med, 2017 12 01;91:13-20.
    PMID: 29031099 DOI: 10.1016/j.compbiomed.2017.10.001
    Shear wave elastography (SWE) examination using ultrasound elastography (USE) is a popular imaging procedure for obtaining elasticity information of breast lesions. Elasticity parameters obtained through SWE can be used as biomarkers that can distinguish malignant breast lesions from benign ones. Furthermore, the elasticity parameters extracted from SWE can speed up the diagnosis and possibly reduce human errors. In this paper, Shearlet transform and local binary pattern histograms (LBPH) are proposed as an original algorithm to differentiate malignant and benign breast lesions. First, Shearlet transform is applied on the SWE images to acquire low frequency, horizontal and vertical cone coefficients. Next, LBPH features are extracted from the Shearlet transform coefficients and subjected to dimensionality reduction using locality sensitivity discriminating analysis (LSDA). The reduced LSDA components are ranked and then fed to several classifiers for the automated classification of breast lesions. A probabilistic neural network classifier trained only with seven top ranked features performed best, and achieved 98.08% accuracy, 98.63% sensitivity, and 97.59% specificity in distinguishing malignant from benign breast lesions. The high sensitivity and specificity of our system indicates that it can be employed as a primary screening tool for faster diagnosis of breast malignancies, thereby possibly reducing the mortality rate due to breast cancer.
  9. Acharya UR, Koh JEW, Hagiwara Y, Tan JH, Gertych A, Vijayananthan A, et al.
    Comput Biol Med, 2018 03 01;94:11-18.
    PMID: 29353161 DOI: 10.1016/j.compbiomed.2017.12.024
    Liver is the heaviest internal organ of the human body and performs many vital functions. Prolonged cirrhosis and fatty liver disease may lead to the formation of benign or malignant lesions in this organ, and an early and reliable evaluation of these conditions can improve treatment outcomes. Ultrasound imaging is a safe, non-invasive, and cost-effective way of diagnosing liver lesions. However, this technique has limited performance in determining the nature of the lesions. This study initiates a computer-aided diagnosis (CAD) system to aid radiologists in an objective and more reliable interpretation of ultrasound images of liver lesions. In this work, we have employed radon transform and bi-directional empirical mode decomposition (BEMD) to extract features from the focal liver lesions. After which, the extracted features were subjected to particle swarm optimization (PSO) technique for the selection of a set of optimized features for classification. Our automated CAD system can differentiate normal, malignant, and benign liver lesions using machine learning algorithms. It was trained using 78 normal, 26 benign and 36 malignant focal lesions of the liver. The accuracy, sensitivity, and specificity of lesion classification were 92.95%, 90.80%, and 97.44%, respectively. The proposed CAD system is fully automatic as no segmentation of region-of-interest (ROI) is required.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links