Displaying all 2 publications

Abstract:
Sort:
  1. Bradshaw L, Koumanov F, Berry S, Betts JA, Gonzalez J
    Exp Physiol, 2023 Apr;108(4):543-548.
    PMID: 36809567 DOI: 10.1113/EP091005
    Cardiovascular disease (CVD) is the leading cause of death worldwide. Physical activity interventions improve almost all modifiable CVD risk factors, but the effect of physical activity on low density lipoprotein cholesterol (LDL-C) is uncertain. This may be due to lack of research on the feeding status in which the physical activity is performed. The aim of this study is to investigate the effect of fasted versus fed exercise on LDL-C concentrations in males and females. One hundred healthy participants, equal males and females, aged between 25 and 60 years will be recruited and will undergo a home-based 12-week exercise intervention. After baseline testing, participants will be randomized to a fasted exercise (exercise after an 8-h fast) or fed exercise (exercise 90-180 min after ingestion of 1 g kg-1 CHO) group and will perform 50 min of moderate intensity exercise (e.g., 95% heart rate of lactate threshold 1) three times a week either before or after a high carbohydrate (1 g kg-1 ) meal. Participants will visit the laboratory again at week 4 and week 12 and measurements will be taken for body composition, resting blood pressure, fasting blood glucose, lipid profiles and systemic inflammation, lactate threshold, and 14-day blood glucose control.
  2. Edinburgh RM, Bradley HE, Abdullah NF, Robinson SL, Chrzanowski-Smith OJ, Walhin JP, et al.
    J Clin Endocrinol Metab, 2020 03 01;105(3).
    PMID: 31628477 DOI: 10.1210/clinem/dgz104
    CONTEXT: Pre-exercise nutrient availability alters acute metabolic responses to exercise, which could modulate training responsiveness.

    OBJECTIVE: To assess acute and chronic effects of exercise performed before versus after nutrient ingestion on whole-body and intramuscular lipid utilization and postprandial glucose metabolism.

    DESIGN: (1) Acute, randomized, crossover design (Acute Study); (2) 6-week, randomized, controlled design (Training Study).

    SETTING: General community.

    PARTICIPANTS: Men with overweight/obesity (mean ± standard deviation, body mass index: 30.2 ± 3.5 kg⋅m-2 for Acute Study, 30.9 ± 4.5 kg⋅m-2 for Training Study).

    INTERVENTIONS: Moderate-intensity cycling performed before versus after mixed-macronutrient breakfast (Acute Study) or carbohydrate (Training Study) ingestion.

    RESULTS: Acute Study-exercise before versus after breakfast consumption increased net intramuscular lipid utilization in type I (net change: -3.44 ± 2.63% versus 1.44 ± 4.18% area lipid staining, P < 0.01) and type II fibers (-1.89 ± 2.48% versus 1.83 ± 1.92% area lipid staining, P < 0.05). Training Study-postprandial glycemia was not differentially affected by 6 weeks of exercise training performed before versus after carbohydrate intake (P > 0.05). However, postprandial insulinemia was reduced with exercise training performed before but not after carbohydrate ingestion (P = 0.03). This resulted in increased oral glucose insulin sensitivity (25 ± 38 vs -21 ± 32 mL⋅min-1⋅m-2; P = 0.01), associated with increased lipid utilization during exercise (r = 0.50, P = 0.02). Regular exercise before nutrient provision also augmented remodeling of skeletal muscle phospholipids and protein content of the glucose transport protein GLUT4 (P < 0.05).

    CONCLUSIONS: Experiments investigating exercise training and metabolic health should consider nutrient-exercise timing, and exercise performed before versus after nutrient intake (ie, in the fasted state) may exert beneficial effects on lipid utilization and reduce postprandial insulinemia.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links