Displaying all 4 publications

Abstract:
Sort:
  1. Kano S, Onda T, Matsumoto Y, Buchachart K, Krudsood S, Looareesuwan S, et al.
    PMID: 9886125
    It was reported that a 47kDa antigenic polypeptide of Plasmodium falciparum had been strongly presented by the sera from 1) imported Japanese malaria patients with severe symptoms and 2) symptomatic and parasitemic inhabitants in endemic areas in the Sudan, Malaysia and the Philippines. In the present study, we observed the reactivity of the sera from falciparum malaria patients who had been hospitalized in the Bangkok Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, and compared the antibody response against the 47kDa antigenic polypeptide according to the severity of the patients. It was observed that antibodies to this molecule were more commonly shared in sera from severer patients, although the IFAT titers against the whole P. falciparum parasite antigen were lower in the group, which suggested that this antibody against the 47kDa molecule was playing a specific role at a severe stage of the infection. Determination of the immunological features of the antigenic molecules of parasites by this type of sero-epidemiological study will provide a new assay system for evaluation of immune status of individuals in different severity and suggest a way of vaccine development.
  2. Chamchoy K, Sudsumrit S, Thita T, Krudsood S, Patrapuvich R, Boonyuen U
    PLoS Negl Trop Dis, 2022 Dec;16(12):e0010986.
    PMID: 36508454 DOI: 10.1371/journal.pntd.0010986
    BACKGROUND: Primaquine and tafenoquine are the only licensed drugs that effectively kill the hypnozoite stage and are used to prevent Plasmodium vivax malaria relapse. However, both primaquine and tafenoquine can cause acute hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient people with varying degrees of severity depending on G6PD variants. Additionally, primaquine efficacy against malaria parasites was decreased in individuals with impaired cytochrome P450 2D6 (CYP2D6) activity due to genetic polymorphisms. This study aimed to characterize G6PD and CYP2D6 genetic variations in vivax malaria patients from Yala province, a malaria-endemic area along the Thai-Malaysian border, and determine the biochemical properties of identified G6PD variants.

    METHODOLOGY/PRINCIPLE FINDINGS: Multiplexed high-resolution melting assay and DNA sequencing detected five G6PD variants, including G6PD Kaiping, G6PD Vanua Lava, G6PD Coimbra, G6PD Mahidol, and G6PD Kerala-Kalyan. Biochemical and structural characterization revealed that G6PD Coimbra markedly reduced catalytic activity and structural stability, indicating a high susceptibility to drug-induced hemolysis. While Kerala-Kalyan had minor effects, it is possible to develop mild adverse effects when receiving radical treatment. CYP2D6 genotyping was performed using long-range PCR and DNA sequencing, and the phenotypes were predicted using the combination of allelic variants. Decreased and no-function alleles were detected at frequencies of 53.4% and 14.2%, respectively. The most common alleles were CYP2D6*36+*10 (25.6%), *10 (23.9%), and *1 (22.2%). Additionally, 51.1% of the intermediate metabolizers showed CYP2D6*10/*36+*10 as the predominant genotype (15.9%).

    CONCLUSIONS/SIGNIFICANCE: Our findings provide insights about genetic variations of G6PD and CYP2D6 in 88 vivax malaria patients from Yala, which may influence the safety and effectiveness of radical treatment. Optimization of 8-aminoquinoline administration may be required for safe and effective treatment in the studied population, which could be a significant challenge in achieving the goal of eliminating malaria.

  3. MalariaGEN, Adam I, Alam MS, Alemu S, Amaratunga C, Amato R, et al.
    Wellcome Open Res, 2022;7:136.
    PMID: 35651694 DOI: 10.12688/wellcomeopenres.17795.1
    This report describes the MalariaGEN Pv4 dataset, a new release of curated genome variation data on 1,895 samples of Plasmodium vivax collected at 88 worldwide locations between 2001 and 2017. It includes 1,370 new samples contributed by MalariaGEN and VivaxGEN partner studies in addition to previously published samples from these and other sources. We provide genotype calls at over 4.5 million variable positions including over 3 million single nucleotide polymorphisms (SNPs), as well as short indels and tandem duplications. This enlarged dataset highlights major compartments of parasite population structure, with clear differentiation between Africa, Latin America, Oceania, Western Asia and different parts of Southeast Asia. Each sample has been classified for drug resistance to sulfadoxine, pyrimethamine and mefloquine based on known markers at the dhfr, dhps and mdr1 loci. The prevalence of all of these resistance markers was much higher in Southeast Asia and Oceania than elsewhere. This open resource of analysis-ready genome variation data from the MalariaGEN and VivaxGEN networks is driven by our collective goal to advance research into the complex biology of P. vivax and to accelerate genomic surveillance for malaria control and elimination.
  4. Trimarsanto H, Amato R, Pearson RD, Sutanto E, Noviyanti R, Trianty L, et al.
    Commun Biol, 2022 Dec 23;5(1):1411.
    PMID: 36564617 DOI: 10.1038/s42003-022-04352-2
    Traditionally, patient travel history has been used to distinguish imported from autochthonous malaria cases, but the dormant liver stages of Plasmodium vivax confound this approach. Molecular tools offer an alternative method to identify, and map imported cases. Using machine learning approaches incorporating hierarchical fixation index and decision tree analyses applied to 799 P. vivax genomes from 21 countries, we identified 33-SNP, 50-SNP and 55-SNP barcodes (GEO33, GEO50 and GEO55), with high capacity to predict the infection's country of origin. The Matthews correlation coefficient (MCC) for an existing, commonly applied 38-SNP barcode (BR38) exceeded 0.80 in 62% countries. The GEO panels outperformed BR38, with median MCCs > 0.80 in 90% countries at GEO33, and 95% at GEO50 and GEO55. An online, open-access, likelihood-based classifier framework was established to support data analysis (vivaxGEN-geo). The SNP selection and classifier methods can be readily amended for other use cases to support malaria control programs.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links