This study reports the distribution of microplastics (MPs) in surface water and estuarine sediments in South and North Setiu Wetland in the South China Sea. Sampling was conducted bimonthly for one year from November 2016 to November 2017, including the northeast and southwest monsoons. Water surface and sediment samples were collected from six different sampling stations (STs). Samples were sorted based on physical analysis (optical observation) and selected particles were further analyzed by chemical characterizations. The findings of this study indicate that a total of 0.36 items/L and 5.97 items/g particles of MPs were found from characterizations surface water and dry sediment, respectively. Among the selected stations included in this research, ST3 (1.375 ± 0.347 items/L) and ST2 (14.250 ± 4.343 items/g) were individually identified as high potential MP sinking areas, exacerbated during the northeast and southwest monsoons. Transparent, film, and filament MP types were consistently found across all stations. Microplastic filaments revealed a functional group of polypropylenes based on the main peak spectrum at 2893-2955 cm-1 (CH alkyl stretching), 1458 cm-1 (CH2 bending), and 1381 cm-1 (CH3 bending). Microplastic materials were thermally decomposed by pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS) and identified as cyclohexane and cyclohexene derivatives, as well as precursors of polymer blends. The distribution of MPs in both matrices varied according to different seasons. These findings provide useful baseline information on the distribution of MPs from the estuarine area in Malaysia and South China Sea waters.
This paper provides detail on sequence analysis of hazy days based on eight monitoring stations from three states (Kelantan, Terengganu and Pahang) in the eastern region of Peninsular Malaysia. The dataset comprises of 1502 daily mean hazy days that had been measured for a decade. The meteorology data namely wind speed, wind direction, air temperature, relative humidity and particulate matter (PM10) were used to comprehend the variability, and the relationship existed amongst variables. The final dataset consists of a summary descriptive analysis and a boxplot, where all five variables were involved, including the minimum, maximum, mean, 1st quartile, median, 3rd quartile and standard deviation are presented. Apart from descriptive analysis, the normality test and histogram were performed as well.
Rapid urbanization and industrial development in the Langat Basin has disturbed the groundwater quality. The populations' reliance on groundwater sources may induce possible risks to human health such as cancer and endocrine dysfunction. This study aims to determine the groundwater quality of an urbanized basin through 24 studied hydrochemical parameters from 45 groundwater samples obtained from 15 different sampling stations by employing integrated multivariate analysis. The abundance of the major ions was in the following order: bicarbonate (HCO3-) > chloride (Cl-) > sodium (Na+) > sulphate (SO42-) > calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Heavy metal dominance was in the following order: Fe > Mn > Zn > As > Hg > Pb > Ni > Cu > Cd > Se > Sr. Classification of the groundwater facies indicated that the studied groundwater belongs to the Na-Cl with saline water type and Na-HCO3 with mix water type characteristics. The saline water type characteristics are derived from agricultural activities, while the mixed water types occur from water-rock interaction. Multivariate analysis performance suggests that industrial, agricultural, and weathering activities have contributed to groundwater contamination. The study will help in the understanding of the groundwater quality issue and serve as a reference for other basins with similar characteristics.