A new species of Spirobranchus (Annelida: Serpulidae) is described based on specimens collected at the coastal Shonan area of Sagami Bay and the adjacent areas of Honshu, Japan. Spirobranchusakitsushima sp. nov. forms large aggregations in the intertidal rocky zone of warm-temperate Japanese shores. This species was referred to as Pomatoleioskraussii (Baird, 1864) until the monotypic genus Pomatoleios was synonymized with Spirobranchus. This new species is formally described based on morphologically distinct Japanese specimens with supporting DNA sequence data. The calcareous opercular endplate of Spirobranchusakitsushima sp. nov. lacks a distinct talon, but some specimens have a slight rounded swelling on the endplate underside, while in other species of the S.kraussii complex a talon is present, usually extended, and with bulges. We examined sub-fossil tube aggregations of the new species and suggest that such aggregation stranded ashore is a good indicator of vertical land movements (uplift and subsidence) resulting from past events, such as earthquakes, in Honshu, Japan.
A new species of the genus Sabellaria Lamarck, 1818 (Annelida: Polychaeta: Sabellariidae) is described from the intertidal zone of Jeram, Selangor, Malaysia. Sabellaria jeramae n. sp. is a gregarious species that constructs large reefs several hundreds of meters long and 50-200 m wide. The new species is distinguished from other congeners by the character combination of the presence of a single kind of middle paleae with conspicuous morphology, and outer paleae with long frayed teeth. Morphological features of the species are described and compared to those of all congeneric species. We also compare the reef structure and geographical distribution of the new species to those of the members of the family Sabellariidae around the world, demonstrating the ecological traits of the reefs.
The intertidal serpulid polychaete Spirobranchus kraussii was originally described from South Africa and has since been reported in numerous sub (tropical) localities around the world. Recently, however, S. kraussii was uncovered as a complex of morphologically similar and geographically restricted species, raising the need to revise S. cf. kraussii populations. We formally describe S. cf. kraussii from Singapore mangroves as Spirobranchus bakau sp. nov. based on morphological and molecular data. Despite their morphological similarities, Maximum Likelihood and Bayesian Inference analyses of 18S and Cyt b DNA sequence data confirm that S. bakau sp. nov. is genetically distinct from S. kraussii and other known species in the complex. Both analyses recovered S. bakau sp. nov. as part of a strongly supported clade (96% bootstrap, 1 posterior probability), comprising S. sinuspersicus, S. kraussii and S. cf. kraussii from Australia and Hawaii. Additionally, paratypes of S. kraussii var. manilensis, described from Manila Bay in the Philippines, were examined and elevated to the full species S. manilensis. Finally, we tested the hypothesis that fertilisation and embryonic development of S. bakau sp. nov. can occur under the wide range of salinities (19.630.9 psu) and temperatures (2531C) reported in the Johor Strait. Fertilisation success of ≥70% was achieved across a temperature range of 2532C and a salinity range of 2032 psu. Embryonic development, however, had a narrower salinity tolerance range of 2732 psu. Clarifying the taxonomic status of S. cf. kraussii populations reported from localities elsewhere in Singapore and Southeast Asia will be useful in establishing the geographical distribution of S. bakau sp. nov. and other members of the S. kraussii-complex.