Displaying all 2 publications

Abstract:
Sort:
  1. Kurniawansyah IS, Rusdiana T, Sopyan I, Ramoko H, Wahab HA, Subarnas A
    Heliyon, 2020 Nov;6(11):e05365.
    PMID: 33251348 DOI: 10.1016/j.heliyon.2020.e05365
    Background: Conventional drug delivery systems have some major drawbacks such as low bioavailability, short residence time and rapid precorneal drainage. An in situ gel drug delivery system provides several benefits, such as prolonged pharmacological duration of action, simpler production techniques, and low cost of manufacturing. This research aims to get the optimum formula of chloramphenicol in situ gel based on the physical evaluation.

    Methods: The effects of independent variables (poloxamer 407 and hydroxypropyl methyl cellulose (HPMC) concentration) on various dependent variables (gelling capacity, pH and viscosity) were investigated by using 32 factorial design and organoleptic evaluation was done with descriptive analysis.

    Results: The optimized formula of chloramphenicol in situ gel yielded 9 variations of poloxamer 407 and HPMC bases composition in % w/v as follows, F1 (5; 0.45), F2 (7.5; 0.45), F3 (10; 0.45), F4 (5; 0.725), F5 (7.5; 0.725), F6 (10; 0.725), F7 (5; 1), F8 (7.5; 1), F9 (10; 1). The results indicated that the organoleptic, pH, and gelling capacity parameters matched all formulas (F1-F9), however, the viscosity parameter only matched F3, F6, F8, and F9. Based on factorial design, F6 had the best formula with desirability value of 0.54, but the design recommended that formula with the composition bases of poloxamer 407 and HPMC at the ratio of 8.16 % w/v and 0.77 % w/v, respectively, was the optimum formula with a desirability value of 0.69.

    Conclusion: All formulas have met the Indonesian pharmacopoeia requirements based on the physical evaluation, especially formula 6 (F6), which was supported by the result of factorial design analysis.

  2. Kurniawansyah IS, Rusdiana T, Sopyan I, Desy Arya IF, Wahab HA, Nurzanah D
    Gels, 2023 Aug 10;9(8).
    PMID: 37623100 DOI: 10.3390/gels9080645
    In recent years, in situ gel delivery systems have received a great deal of attention among pharmacists. The in situ gelation mechanism has several advantages over ointments, the most notable being the ability to provide regular and continuous drug delivery with no impact on visual clarity. Bioavailability, penetration, duration, and maximum medication efficacy are all improved by this mechanism. Our review systematically synthesizes and discusses comparisons between three types of in situ gelling system according to their phase change performance based on the physicochemical aspect from publications indexed in the Pubmed, ResearchGate, Scopus, Elsevier, and Google Scholar databases. An optimal temperature-sensitive in situ gelling solution must have a phase change temperature greater than ambient temperature (25 °C) to be able to be readily delivered to the eye; hence, it was fabricated at 35 °C, which is the precorneal temperature. In a pH-sensitive gelling system, a gel develops immediately when the bio-stimuli come into contact with it. An in situ gelling system with ionic strength-triggered medication can also perhaps be used in optical drug-delivery mechanisms. In studies about the release behavior of drugs from in situ gels, different models have been used such as zero-order kinetics, first-order kinetics, the Higuchi model, and the Korsmeyer-Peppas, Peppas-Sahlin and Weibull models. In conclusion, the optimum triggering approach for forming gels in situ is determined by a certain therapeutic delivery application combined with the physico-chemical qualities sought.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links