Background:Litsea angulata is a plant species belonging to Lauraceae family that is distributed throughout Indonesia, Malaysia, and New Guinea. The seeds have been traditionally used by local people in Kalimantan, Indonesia for the treatment of boils; however, there is no information about the potency of its branch, bark and leaves yet. This study aimed to determine the antioxidant, antimicrobial activity as well as the phytochemical constituent of Litsea angulata branch, bark, and leaves. Methods: Extraction was performed by successive maceration method using n-hexane, ethyl acetate, and ethanol solvent. Antioxidant activity was evaluated by DPPH radical scavenging assay. The antimicrobial activity using the 96 well-plate microdilution broth method against Staphylococcus aureus and Streptococcus mutans. Results: Based on the phytochemical analysis, it showed that extract of L. angulata contains alkaloids, flavonoids, tannins, terpenoids, and coumarin. The results showed that all extracts of plant samples displayed the ability to inhibit DPPH free radical formation and all tested microorganisms. Conclusions:L. angulata contains secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids, carotenoids, and coumarin. The antioxidant activity on different plant extracts was a range as very strong to weak capacity. All extracts in this study could inhibit the growth of S. aureus and S. mutans.
The broader objective of this study is to identify natural materials that might inhibit the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We have focused on stingless bee honey, which has a unique taste that is both sweet and sour and sometimes bitter. We screened 12 samples of honey from 11 species of stingless bees using an angiotensin-converting enzyme 2 (ACE2)-spike protein-binding assay and phytochemical analysis. Ten of the samples showed inhibition above 50% in this assay system. Most of the honey contained tannins, alkaloids, flavonoids, triterpenoids, carotenoids and carbohydrates. Our findings in this in vitro study showed that honey from stingless bees may have a potent effect against SARS-CoV-2 infection by inhibiting the ACE2-spike protein-binding.