Displaying all 2 publications

Abstract:
Sort:
  1. Zahari Z, Jani NA, Amanah A, Latif MN, Majid MI, Adenan MI
    Phytomedicine, 2014 Feb 15;21(3):282-5.
    PMID: 24269185 DOI: 10.1016/j.phymed.2013.09.011
    Methanolic extracts of 70 Malaysia plants were screened for their in vitro antitrypanosomal activity using Trypanosome brucei rhodesience, strain STIB 900 and mouse skeletal cell (L-6) in cytotoxicity activity assay. Results indicated that methanol extract from Elephantopus scaber Linn. (E. scaber) possessed the highest value of antitrypanosomal activity with good selectivity index (antitrypanosomal IC50 of 0.22±0.02 μg/ml, SI value of 204.55). Based on these results, E. scaber was chosen for further study by applying bioassay guided fractionation to isolate its antiprotozoal principle. The antiprotozoal principle was isolated from the ethyl acetate partition through solvent fractionation and crystallization process. The isolated active compound 1 was identified as deoxyelephantopin on the basis of its spectral analysis (FTIR, MS, 1D and 2D NMR).
  2. Latif MN, Rahim NSA, Samidin S, Jamal SH, Yusop MR, Isahak WNRW, et al.
    PMID: 38568305 DOI: 10.1007/s11356-024-33060-z
    Hydrogen (H2) represents a promising avenue for reducing carbon emissions in energy systems. However, achieving its widespread adoption requires more effective and scalable synthesis methods. Herein, we investigated the isothermal carburization process of the MoO3 catalyst. This reaction was carried out at a constant temperature of 700 °C in a 60% CO/He stream, with hold reaction times varying (60-min, 90-min, and 120-min). This investigation was conducted using a micro-reactor Autochem with the aim of enhancing the yield of H2. The study focused on evaluating the chemical reduction and carburization behavior of the MoO3 catalyst through X-ray diffraction (XRD), transmission electron microscopy (TEM), and CHNS elemental analysis. The XRD analysis revealed the formation of carbides, Mo2C, and MoO2, serving as active sites for subsequent H2 production in the thermochemical water splitting (TWS) process. The carburization at a 60-min hold time exhibited enhanced H2 production, generating approximately ~ 6.60 µmol of H2 with a yield of up to ~ 32.90% and a conversion rate of ~ 54.83%. This finding emphasizes the essential role played by the formation of carbides, particularly Mo2C, in the carburization process, contributing significantly to the facilitation of H2 production. These carbides serve as exceptionally active catalytic sites that actively promote the generation of hydrogen. This study underscores that the optimized duration of catalyst exposure is a key factor influencing the successful carburization of MoO3 catalysts. This emphasizes how important carbide species are to increasing H2 efficiency. Additionally, it is noted that carbon formation on the MoO3 active sites can act as a potential poison to the catalysts, leading to rapid deactivation after prolonged exposure to the CO precursor.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links