Displaying all 6 publications

Abstract:
Sort:
  1. Fan X, Matsumoto H, Wang Y, Hu Y, Liu Y, Fang H, et al.
    Environ Sci Technol, 2019 Nov 19;53(22):13042-13052.
    PMID: 31631659 DOI: 10.1021/acs.est.9b04616
    Rice fungal pathogens, responsible for severe rice yield loss and biotoxin contamination, cause increasing concerns on environmental safety and public health. In the paddy environment, we observed that the asymptomatic rice phyllosphere microenvironment was dominated by an indigenous fungus, Aspergillus cvjetkovicii, which positively correlated with alleviated incidence of Magnaporthe oryzae, one of the most aggressive plant pathogens. Through the comparative metabolic profiling for the rice phyllosphere microenvironment, two metabolites were assigned as exclusively enriched metabolic markers in the asymptomatic phyllosphere and increased remarkably in a population-dependent manner with A. cvjetkovicii. These two metabolites evidenced to be produced by A. cvjetkovicii in either a phyllosphere microenvironment or artificial media were purified and identified as 2(3H)-benzofuranone and azulene, respectively, by gas chromatography coupled to triple quadrupole mass spectrometry and nuclear magnetic resonance analyses. Combining with bioassay analysis in vivo and in vitro, we found that 2(3H)-benzofuranone and azulene exerted dissimilar actions at the stage of infection-related development of M. oryzae. A. cvjetkovicii produced 2(3H)-benzofuranone at the early stage to suppress MoPer1 gene expression, leading to inhibited mycelial growth, while azulene produced lately was involved in blocking of appressorium formation by downregulation of MgRac1. More profoundly, the microenvironmental interplay dominated by A. cvjetkovicii significantly blocked M. oryzae epidemics in the paddy environment from 54.7 to 68.5% (p < 0.05). Our study first demonstrated implication of the microenvironmental interplay dominated by indigenous and beneficial fungus to ecological balance and safety of the paddy environment.
  2. Midot F, Lau SYL, Wong WC, Tung HJ, Yap ML, Lo ML, et al.
    Microorganisms, 2019 Oct 16;7(10).
    PMID: 31623251 DOI: 10.3390/microorganisms7100464
    Ganoderma boninense causes basal stem rot (BSR) and is responsible for substantial economic losses to Southeast Asia's palm oil industry. Sarawak, a major producer in Malaysia, is also affected by this disease. Emergence of BSR in oil palm planted on peat throughout Sarawak is alarming as the soil type was previously regarded as non-conducive. Phylogenetic analysis indicated a single species, G. boninense as the cause of BSR in Sarawak. Information on evolutionary and demographic history for G. boninense in Sarawak inferred through informative genes is lacking. Hence, a haplotype study on single nucleotide polymorphisms in internal transcribed spacers (SNPs-ITS) of G. boninense was carried out. Sequence variations were analysed for population structure, phylogenetic and phylogeographic relationships. The internal transcribed spacers (ITS) region of 117 isolates from four populations in eight locations across Sarawak coastal areas revealed seven haplotypes. A major haplotype, designated GbHap1 (81.2%), was found throughout all sampling locations. Single nucleotide polymorphisms were observed mainly in the ITS1 region. The genetic structure was not detected, and genetic distance did not correlate with geographical distance. Haplotype network analysis suggested evidence of recent demographic expansion. Low genetic differences among populations also suggested that these isolates belong to a single G. boninense founder population adapting to oil palm as the host.
  3. Wong WC, Tung HJ, Fadhilah MN, Midot F, Lau SYL, Melling L, et al.
    Mycologia, 2021 06 23;113(5):902-917.
    PMID: 34161196 DOI: 10.1080/00275514.2021.1884815
    In 1911 and 1917, the first commercial plantings of African oil palm (Elaeis guineensis Jacq.) were made in Indonesia and Malaysia in Southeast Asia. In less than 15 years, basal stem rot (BSR) was reported in Malaysia. It took nearly another seven decades to identify the main causal agent of BSR as the fungus, Ganoderma boninense. Since then, research efforts have focused on understanding G. boninense disease epidemiology, biology, and etiology, but limited progress was made to characterize pathogen genetic diversity, spatial structure, pathogenicity, and virulence. This study describes pathogen variability, gene flow, population differentiation, and genetic structure of G. boninense in Sarawak (Malaysia), Peninsular Malaysia, and Sumatra (Indonesia) inferred by 16 highly polymorphic cDNA-SSR (simple sequence repeat) markers. Marker-inferred genotypic diversity indicated a high level of pathogen variability among individuals within a population and among different populations. This genetic variability is clearly the result of outcrossing between basidiospores to produce recombinant genotypes. Although our results indicated high gene flow among the populations, there was no significant genetic differentiation among G. boninense populations on a regional scale. It suggested that G. boninense genetic makeup is similar across a wide region. Furthermore, our results revealed the existence of three admixed genetic clusters of G. boninense associated with BSR-diseased oil palms sampled throughout Sarawak, Peninsular Malaysia, and Sumatra. We postulate that the population structure is likely a reflection of the high genetic variability of G. boninense populations. This, in turn, could be explained by highly successful outcrossing between basidiospores of G. boninense from Southeast Asia and introduced genetic sources from various regions of the world, as well as regional adaptation of various pathogen genotypes to different palm hosts. Pathogen variability and population structure could be employed to deduce the epidemiology of G. boninense, as well as the implications of plantation cultural practices on BSR disease control in different regions.
  4. Wong WC, Tung HJ, Nurul Fadhilah M, Midot F, Lau SYL, Melling L, et al.
    Mycologia, 2022;114(6):947-963.
    PMID: 36239960 DOI: 10.1080/00275514.2022.2118512
    Ganoderma boninense, the causal agent of basal stem rot (BSR) disease, has been recognized as a major economic threat to commercial plantings of oil palm (Elaeis guineensis Jacq.) in Southeast Asia, which supplies 86% of the world's palm oil. High genetic diversity and gene flow among regional populations of 417 G. boninense isolates collected from Sabah, Sarawak, and Peninsular Malaysia (Malaysia) and Sumatra (Indonesia) were demonstrated using 16 microsatellite loci. Three genetic clusters and different admixed populations of G. boninense across regions were detected, and they appeared to follow the spread of the fungus from the oldest (Peninsular Malaysia and Sumatra) to younger generations of oil palm plantings (Sabah and Sarawak). Low spatial genetic differentiation of G. boninense (FST = 0.05) among the sampling regions revealed geographically nonrestricted gene dispersal, but isolation by distance was still evident. Analysis of molecular variance (AMOVA) confirmed the little to no genetic differentiation among the pathogen populations and the three genetic clusters defined by STRUCTURE and minimum spanning network. Despite G. boninense being highly outcrossing and spread by sexual spores, linkage disequilibrium was detected in 7 of the 14 populations. Linkage disequilibrium indicated that the reproduction of the fungus was not entirely by random mating and genetic drift could be an important structuring factor. Furthermore, evidence of population bottleneck was indicated in the oldest oil palm plantations as detected in genetic clusters 2 and 3, which consisted mainly of Peninsular Malaysia and Sumatra isolates. The population bottleneck or founding event could have arisen from either new planting or replanting after the removal of large number of palm hosts. The present study also demonstrated that migration and nonrandom mating of G. boninense could be important for survival and adaptation to new palm hosts.
  5. Nie Y, Lau SYL, Tan X, Lu X, Liu S, Tahvanainen T, et al.
    Front Plant Sci, 2022;13:974251.
    PMID: 36160957 DOI: 10.3389/fpls.2022.974251
    Melting permafrost mounds in subarctic palsa mires are thawing under climate warming and have become a substantial source of N2O emissions. However, mechanistic insights into the permafrost thaw-induced N2O emissions in these unique habitats remain elusive. We demonstrated that N2O emission potential in palsa bogs was driven by the bacterial residents of two dominant Sphagnum mosses especially of Sphagnum capillifolium (SC) in the subarctic palsa bog, which responded to endogenous and exogenous Sphagnum factors such as secondary metabolites, nitrogen and carbon sources, temperature, and pH. SC's high N2O emission activity was linked with two classes of distinctive hyperactive N2O emitters, including Pseudomonas sp. and Enterobacteriaceae bacteria, whose hyperactive N2O emitting capability was characterized to be dominantly pH-responsive. As the nosZ gene-harboring emitter, Pseudomonas sp. SC-H2 reached a high level of N2O emissions that increased significantly with increasing pH. For emitters lacking the nosZ gene, an Enterobacteriaceae bacterium SC-L1 was more adaptive to natural acidic conditions, and N2O emissions also increased with pH. Our study revealed previously unknown hyperactive N2O emitters in Sphagnum capillifolium found in melting palsa mound environments, and provided novel insights into SC-associated N2O emissions.
  6. Dom SP, Ikenaga M, Lau SYL, Radu S, Midot F, Yap ML, et al.
    Sci Rep, 2021 Mar 19;11(1):6416.
    PMID: 33742002 DOI: 10.1038/s41598-021-81865-6
    Tropical peat swamp forest is a global store of carbon in a water-saturated, anoxic and acidic environment. This ecosystem holds diverse prokaryotic communities that play a major role in nutrient cycling. A study was conducted in which a total of 24 peat soil samples were collected in three forest types in a tropical peat dome in Sarawak, Malaysia namely, Mixed Peat Swamp (MPS), Alan Batu (ABt), and Alan Bunga (ABg) forests to profile the soil prokaryotic communities through meta 16S amplicon analysis using Illumina Miseq. Results showed these ecosystems were dominated by anaerobes and fermenters such as Acidobacteria, Proteobacteria, Actinobacteria and Firmicutes that cover 80-90% of the total prokaryotic abundance. Overall, the microbial community composition was different amongst forest types and depths. Additionally, this study highlighted the prokaryotic communities' composition in MPS was driven by higher humification level and lower pH whereas in ABt and ABg, the less acidic condition and higher organic matter content were the main factors. It was also observed that prokaryotic diversity and abundance were higher in the more oligotrophic ABt and ABg forest despite the constantly waterlogged condition. In MPS, the methanotroph Methylovirgula ligni was found to be the major species in this forest type that utilize methane (CH4), which could potentially be the contributing factor to the low CH4 gas emissions. Aquitalea magnusonii and Paraburkholderia oxyphila, which can degrade aromatic compounds, were the major species in ABt and ABg forests respectively. This information can be advantageous for future study in understanding the underlying mechanisms of environmental-driven alterations in soil microbial communities and its potential implications on biogeochemical processes in relation to peatland management.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links