Displaying all 2 publications

Abstract:
Sort:
  1. Chen WL, Ling YS, Lee DJH, Lin XQ, Chen ZY, Liao HT
    Chemosphere, 2020 Mar;242:125268.
    PMID: 31896175 DOI: 10.1016/j.chemosphere.2019.125268
    This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
  2. Lem FF, Opook F, Lee DJH, Chee FT, Lawson FP, Chin SN
    Front Pharmacol, 2020;11:585331.
    PMID: 33746739 DOI: 10.3389/fphar.2020.585331
    Background: The emergence of COVID-19 as a pandemic has resulted in the need for urgent development of vaccines and drugs and the conduction of clinical trials to fight the outbreak. Because of the time constraints associated with the development of vaccines and effective drugs, drug repurposing and other alternative treatment methods have been used to treat patients that have been infected by the SARS-CoV-2 virus and have acquired COVID-19. Objective: The objective of this systematic scoping review is to provide an overview of the molecular mechanism of action of repurposed drugs or alternative treatment medicines used to attenuate COVID-19 disease. Method: The research articles or gray literature, including theses, government reports, and official news online, were identified from four databases and one search engine. The full content of a total of 160 articles that fulfilled our inclusion criteria was analyzed and information about six drugs (ritonavir, lopinavir, oseltamivir, remdesivir, favipiravir, and chloroquine) and four Traditional Chinese Medicines (Shuang Huang Lian Kou Fu Ye, TCM combination of Bu Huan Jin Zheng Qi San and Da Yuan Yin, Xue Bi Jing Injection, and Qing Fei Pai Du Tang) was extracted. Results: All of the repurposed drugs and complementary medicine that have been used for the treatment of COVID-19 depend on the ability of the drug to inhibit the proliferation of the SARS-CoV-2 virus by binding to enzyme active sites, viral chain termination, or triggering of the molecular pathway, whereas Traditional Chinese Medicine plays a pivotal role in triggering the inflammation pathway, such as the neuraminidase blocker, to fight the SARS-CoV-2 virus.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links