Displaying all 5 publications

Abstract:
Sort:
  1. Cheung H, Lee FC
    Australas Radiol, 1993 Feb;37(1):90-2.
    PMID: 8323524
    A case of recurrent hemiplegia due to saccular aneurysm of the left posterior cerebral artery in a female infant is described. The diagnosis was made at angiography, prompted by CT detection of a hyperdense, intra-aneurysmal thrombus, and was confirmed at subsequent surgery.
  2. Lee FC, Hakim SL, Kamaluddin MA, Thong KL
    PMID: 23082563
    Clostridium perfringens (CP) and sulphite reducing clostridia (SRC) densities in the Selangor River, Bernam River and Tengi River Canal were examined between April 2007 and January 2008. Water samples were taken from two or three locations along each river, using either depth-integration or grab sampling methods. The downstream sampling site of the Selangor River, Rantau Panjang, reported the highest arithmetic mean of CP and SRC densities (583.45 and 8,120.08 cfu/100 ml, respectively). Both CP and SRC densities in the Selangor River increased further downstream, but the reverse was true in the Bernam River. The SRC densities in these rivers were significantly different from each other (p < 0.05) when comparing upstream and downstream results, but CP densities were not significantly different (p > 0.05). SRC densities were significantly correlated (p < 0.05) in different locations along the Selangor River and the Bernam River. The CP densities did not show such pattern (p > 0.05). River discharge had no significant correlation with SRC or CP densities by study site (p > 0.05). Since the Selangor River has a denser human population along its banks, this study confirms CP as a suitable indicator of human fecal contamination. However, tracing CP distribution along the river is more difficult than SRC. To our knowledge, this is the first study of CP and SRC densities from Malaysian rivers. CP densities found in this study were within the range of general water bodies reported from other countries.
  3. Baharum H, Morita H, Tomitsuka A, Lee FC, Ng KY, Rahim RA, et al.
    Mar Biotechnol (NY), 2011 Oct;13(5):845-56.
    PMID: 21181422 DOI: 10.1007/s10126-010-9344-5
    Type III polyketide synthases (PKSs) produce an array of metabolites with diverse functions. In this study, we have cloned the complete reading frame encoding type III PKS (SbPKS) from a brown seaweed, Sargassum binderi, and characterized the activity of its recombinant protein biochemically. The deduced amino acid sequence of SbPKS is 414 residues in length, sharing a higher sequence similarity with bacterial PKSs (38% identity) than with plant PKSs. The Cys-His-Asn catalytic triad of PKS is conserved in SbPKS with differences in some of the residues lining the active and CoA binding sites. The wild-type SbPKS displayed broad starter substrate specificity to aliphatic long-chain acyl-CoAs (C(6)-C(14)) to produce tri- and tetraketide pyrones. Mutations at H(331) and N(364) caused complete loss of its activity, thus suggesting that these two residues are the catalytic residues for SbPKS as in other type III PKSs. Furthermore, H227G, H227G/L366V substitutions resulted in increased tetraketide-forming activity, while wild-type SbPKS produces triketide α-pyrone as a major product. On the other hand, mutant H227G/L366V/F93A/V95A demonstrated a dramatic decrease of tetraketide pyrone formation. These observations suggest that His(227) and Leu(366) play an important role for the polyketide elongation reaction in SbPKS. The conformational changes in protein structure especially the cavity of the active site may have more significant effect to the activity of SbPKS compared with changes in individual residues.
  4. Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR, Kulaveerasingam H
    Plant J, 2017 Jul;91(1):97-113.
    PMID: 28370622 DOI: 10.1111/tpj.13549
    The oil biosynthesis pathway must be tightly controlled to maximize oil yield. Oil palm accumulates exceptionally high oil content in its mesocarp, suggesting the existence of a unique fruit-specific fatty acid metabolism transcriptional network. We report the complex fruit-specific network of transcription factors responsible for modulation of oil biosynthesis genes in oil palm mesocarp. Transcriptional activation of EgWRI1-1 encoding a key master regulator that activates expression of oil biosynthesis genes, is activated by three ABA-responsive transcription factors, EgNF-YA3, EgNF-YC2 and EgABI5. Overexpression of EgWRI1-1 and its activators in Arabidopsis accelerated flowering, increased seed size and oil content, and altered expression levels of oil biosynthesis genes. Protein-protein interaction experiments demonstrated that EgNF-YA3 interacts directly with EgWRI1-1, forming a transcription complex with EgNF-YC2 and EgABI5 to modulate transcription of oil biosynthesis pathway genes. Furthermore, EgABI5 acts downstream of EgWRKY40, a repressor that interacts with EgWRKY2 to inhibit the transcription of oil biosynthesis genes. We showed that expression of these activators and repressors in oil biosynthesis can be induced by phytohormones coordinating fruit development in oil palm. We propose a model highlighting a hormone signaling network coordinating fruit development and fatty acid biosynthesis.
  5. Ooi TE, Yeap WC, Daim LD, Ng BZ, Lee FC, Othman AM, et al.
    Proteome Sci, 2015;13:28.
    PMID: 26617468 DOI: 10.1186/s12953-015-0085-2
    BACKGROUND: The oil palm Elaeis guineensis Jacq. which produces the highest yield per unit land area of the oil crops is the most important commercial oil crop in South East Asia. The fleshy mesocarp of oil palm fruit, where oil is mostly derived from, contains up to 90 % dry weight of oil (one of the most concentrated in plant tissues). Hence, there is attention given to gain insights into the processes of oil deposition in this oil rich tissue. For that purpose, two-dimensional differential gel electrophoresis (DIGE) coupled with western assays, were used here to analyze differential protein levels in genetically-related high-and low-yielding oil palm mesocarps.

    RESULTS: From the DIGE comparative analysis in combination with western analysis, 41 unique differentially accumulated proteins were discovered. Functional categorization of these proteins placed them in the metabolisms of lipid, carbohydrate, amino acids, energy, structural proteins, as well as in other functions. In particular, higher abundance of fructose-1,6-biphosphate aldolase combined with reduced level of triosephosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase may be indicative of important flux balance changes in glycolysis, while amino acid metabolism also appeared to be closely linked with oil yield.

    CONCLUSIONS: Forty-one proteins in several important biological pathways were identified as exhibiting differential in abundance at critical oil production stages. These confirm that oil yield is a complex trait involving the regulation of genes in multiple biological pathways. The results also provide insights into key control points of lipid biosynthesis in oil palm and can assist in the development of genetic markers for use in oil palm breeding programmes.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links