Preferential conversion of azathioprine or 6-mercaptopurine into methylated metabolites is a major cause of thiopurine resistance. To seek potentially Mendelian causes of thiopurine hypermethylation, we recruited 12 individuals who exhibited extreme therapeutic resistance while taking azathioprine or 6-mercaptopurine and performed whole-exome sequencing (WES) and copy-number variant analysis by array-based comparative genomic hybridisation (aCGH). Exome-wide variant filtering highlighted four genes potentially associated with thiopurine metabolism (ENOSF1 and NFS1), transport (SLC17A4) or therapeutic action (RCC2). However, variants of each gene were found only in two or three patients, and it is unclear whether these genes could influence thiopurine hypermethylation. Analysis by aCGH did not identify any unusual or pathogenic copy-number variants. This suggests that if causative mutations for the hypermethylation phenotype exist they may be heterogeneous, occurring in several different genes, or they may lie within regulatory regions not captured by WES. Alternatively, hypermethylation may arise from the involvement of multiple genes with small effects. To test this hypothesis would require recruitment of large patient samples and application of genome-wide association studies.
Whole-exome sequencing (WES) has been widely used for analysis of human genetic diseases, but its value for the pharmacogenomic profiling of individuals is not well studied. Initially, we performed an in-depth evaluation of the accuracy of WES variant calling in the pharmacogenes CYP2D6 and CYP2C19 by comparison with MiSeq(®) amplicon sequencing data (n = 36). This analysis revealed that the concordance rate between WES and MiSeq(®) was high, achieving 99.60% for variants that were called without exceeding the truth-sensitivity threshold (99%), defined during variant quality score recalibration (VQSR). Beyond this threshold, the proportion of discordant calls increased markedly. Subsequently, we expanded our findings beyond CYP2D6 and CYP2C19 to include more genes genotyped by the iPLEX(®) ADME PGx Panel in the subset of twelve samples. WES performed well, agreeing with the genotyping panel in approximately 99% of the selected pass-filter variant calls. Overall, our results have demonstrated WES to be a promising approach for pharmacogenomic profiling, with an estimated error rate of lower than 1%. Quality filters, particularly VQSR, are important for reducing the number of false variants. Future studies may benefit from examining the role of WES in the clinical setting for guiding drug therapy.
Here we review contaminant exposure and related health effects in six selected Baltic key species. Sentinel species included are common eider, white-tailed eagle, harbour porpoise, harbour seal, ringed seal and grey seal. The review represents the first attempt of summarizing available information and baseline data for these biomonitoring key species exposed to industrial hazardous substances focusing on anthropogenic persistent organic pollutants (POPs). There was only limited information available for white-tailed eagles and common eider while extensive information exist on POP exposure and health effects in the four marine mammal species. Here we report organ-tissue endpoints (pathologies) and multiple biomarkers used to evaluate health and exposure of key species to POPs, respectively, over the past several decades during which episodes of significant population declines have been reported. Our review shows that POP exposure affects the reproductive system and survival through immune suppression and endocrine disruption, which have led to population-level effects on seals and white-tailed eagles in the Baltic. It is notable that many legacy contaminants, which have been banned for decades, still appear to affect Baltic wildlife. With respect to common eiders, changes in food composition, quality and contaminant exposure seem to have population effects which need to be investigated further, especially during the incubation period where the birds fast. Since new industrial contaminants continuously leak into the environment, we recommend continued monitoring of them in sentinel species in the Baltic, identifying possible effects linked to climate change, and modelling of population level effects of contaminants and climate change.