METHODOLOGY/PRINCIPAL FINDINGS: Available evidence was evaluated using a step-wise process that included systematic literature reviews, policymaker and stakeholder interviews, a study to assess dengue contingency planning and outbreak management in 10 countries, and a retrospective logistic regression analysis to identify alarm signals for an outbreak warning system using datasets from five dengue endemic countries. Best practices for managing a dengue outbreak are provided for key elements of a dengue contingency plan including timely contingency planning, the importance of a detailed, context-specific dengue contingency plan that clearly distinguishes between routine and outbreak interventions, surveillance systems for outbreak preparedness, outbreak definitions, alert algorithms, managerial capacity, vector control capacity, and clinical management of large caseloads. Additionally, a computer-assisted early warning system, which enables countries to identify and respond to context-specific variables that predict forthcoming dengue outbreaks, has been developed.
CONCLUSIONS/SIGNIFICANCE: Most countries do not have comprehensive, detailed contingency plans for dengue outbreaks. Countries tend to rely on intensified vector control as their outbreak response, with minimal focus on integrated management of clinical care, epidemiological, laboratory and vector surveillance, and risk communication. The Technical Handbook for Surveillance, Dengue Outbreak Prediction/ Detection and Outbreak Response seeks to provide countries with evidence-based best practices to justify the declaration of an outbreak and the mobilization of the resources required to implement an effective dengue contingency plan.
METHODOLOGY/PRINCIPAL FINDINGS: The Shewhart method and Endemic Channel were used to identify alarm variables that may predict dengue outbreaks. Five country datasets were compiled by epidemiological week over the years 2007-2013. These data were split between the years 2007-2011 (historic period) and 2012-2013 (evaluation period). Associations between alarm/ outbreak variables were analysed using logistic regression during the historic period while alarm and outbreak signals were captured during the evaluation period. These signals were combined to form alarm/ outbreak periods, where 2 signals were equal to 1 period. Alarm periods were quantified and used to predict subsequent outbreak periods. Across Mexico and Dominican Republic, an increase in probable cases predicted outbreaks of hospitalised cases with sensitivities and positive predictive values (PPV) of 93%/ 83% and 97%/ 86% respectively, at a lag of 1-12 weeks. An increase in mean temperature ably predicted outbreaks of hospitalised cases in Mexico and Brazil, with sensitivities and PPVs of 79%/ 73% and 81%/ 46% respectively, also at a lag of 1-12 weeks. Mean age was predictive of hospitalised cases at sensitivities and PPVs of 72%/ 74% and 96%/ 45% in Mexico and Malaysia respectively, at a lag of 4-16 weeks.
CONCLUSIONS/SIGNIFICANCE: An increase in probable cases was predictive of outbreaks, while meteorological variables, particularly mean temperature, demonstrated predictive potential in some countries, but not all. While it is difficult to define uniform variables applicable in every country context, the use of probable cases and meteorological variables in tailored early warning systems could be used to highlight the occurrence of dengue outbreaks or indicate increased risk of dengue transmission.