Displaying all 7 publications

Abstract:
Sort:
  1. Leong PK, Tan NH, Fung SY, Sim SM
    Trans R Soc Trop Med Hyg, 2012 Dec;106(12):731-7.
    PMID: 23062608 DOI: 10.1016/j.trstmh.2012.07.009
    Cross neutralisation of venoms by antivenom raised against closely-related species has been well documented. The spectrum of paraspecific protection of antivenom raised against Asiatic Naja and Bungarus (krait) venoms, however, has not been fully investigated. In this study, we examined the cross neutralisation of venoms from common Southeast Asian cobras and kraits by two widely used polyvalent antivenoms produced in India: Vins Polyvalent Antivenom (VPAV) and Bharat Polyvalent Antivenom (BPAV), using both in vitro and in vivo mouse protection assays. BPAV was only moderately effective against venoms of N. kaouthia (Thailand) and N. sumatrana, and either very weakly effective or totally ineffective against the other cobra and krait venoms. VPAV, on the other hand, neutralised effectively all the Southeast Asian Naja venoms tested, as well as N. naja, B. candidus and Ophiophagus hannah venoms, but the potency ranges from effective to weakly effective. In an in vivo rodent model, VPAV also neutralised the lethality of venoms from Asiatic Naja and B. candidus. In anesthetised rat studies, both antivenoms effectively protected against the N. kaouthia venom-induced cardio-respiratory depressant and neuromuscular blocking effects. Overall, our results suggest that VPAV could be used as alternative antivenom for the treatment of elapid envenomation in Southeast Asian regions including Malaysia, Thailand and certain regions of Indonesia.
  2. Tan CH, Fung SY, Yap MK, Leong PK, Liew JL, Tan NH
    J Proteomics, 2016 Jan 30;132:1-12.
    PMID: 26598790 DOI: 10.1016/j.jprot.2015.11.014
    The venom proteome of the Malayan blue coral snake, Calliophis bivirgata flaviceps from west Malaysia was investigated by 1D-SDS-PAGE and shotgun-LCMS/MS. A total of 23 proteins belonging to 11 protein families were detected from the venom proteome. For the toxin proteins, the venom consists mainly of phospholipase A2 (41.1%), cytotoxin (22.6%), SVMPs (18.7%) and vespryns (14.6%). However, in contrast to the venoms of New World coral snakes and most elapids, there was no post-synaptic α-neurotoxin detected. The proteome also revealed a relatively high level of phosphodiesterase (1.3%), which may be associated with the reported high level of adenosine in the venom. Also detected were 5'-nucleotidase (0.3%), hyaluronidase (0.1%) and cysteine-type endopeptide inhibitor (0.6%). Enzymatic studies confirmed the presence of phospholipase A2, phosphodiesterase, 5'-nucleotidase and acetylcholinesterase activities but not l-amino acid oxidase activity. The venom exhibited moderate cytotoxic activity against CRL-2648 fibroblast cell lines (IC50=62.14±0.87 μg/mL) and myotoxicity in mice, presumably due to the action of its cytotoxin or its synergistic action with phospholipase A2. Interestingly, the venom lethality could be cross-neutralized by a neurotoxic bivalent antivenom from Taiwan. Together, the findings provide insights into the composition and functions of the venom of this exotic oriental elapid snake.
  3. Leong PK, Tan CH, Sim SM, Fung SY, Sumana K, Sitprija V, et al.
    Acta Trop, 2014 Apr;132:7-14.
    PMID: 24384454 DOI: 10.1016/j.actatropica.2013.12.015
    Snake envenomation is a serious public health threat in many rural areas of Asia and Africa. Antivenom has hitherto been the definite treatment for snake envenomation. Owing to a lack of local production of specific antivenom, most countries in these regions fully depend on foreign supplies of antivenoms. Often, the effectiveness of the imported antivenoms against local medically important species has not been validated. This study aimed to assess cross-neutralizing capacity of a recently developed polyvalent antivenom, Hemato Polyvalent Snake Antivenom (HPAV), against venoms of a common viper and some pit vipers from Southeast Asia. Neutralisation assays showed that HPAV was able to effectively neutralize lethality of the common Southeast Asian viperid venoms examined (Calloselasma, Crytelytrops, Popeia, and Daboia sp.) except for Tropidolaemus wagleri venom. HPAV also effectively neutralized the procoagulant and hemorrhagic activities of all the venoms examined, corroboratively supporting the capability of HPAV in neutralizing viperid venoms which are principally hematoxic. The study also indicated that HPAV fully prevented the occurrence of hematuria and proteinuria in mice envenomed with Thai Daboia siamensis venom but was only partially effective against venoms of Myanmar D. siamensis. Thus, HPAV appears to be useful against its homologous venoms and venoms from Southeast Asian viperids including several medically important pit vipers belonging to the Trimeresurus complex. Nevertheless, the effectiveness of HPAV as a paraspecific antivenom for treatment of viperid envenomation in Southeast Asian region requires further assessment from future clinical trials.
  4. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
  5. Sapsutthipas S, Leong PK, Akesowan S, Pratanaphon R, Tan NH, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2015 Mar;9(3):e0003609.
    PMID: 25774998 DOI: 10.1371/journal.pntd.0003609
    Snake envenomation has been estimated to affect 1.8 million people annually with about 94,000 deaths mostly in poor tropical countries. Specific antivenoms are the only rational and effective therapy for these cases. Efforts are being made to produce effective, affordable and sufficient antivenoms for these victims. The immunization process, which has rarely been described in detail, is one step that needs to be rigorously studied and improved especially with regard to the production of polyspecific antisera. The polyspecific nature of therapeutic antivenom could obviate the need to identify the culprit snake species. The aim of this study was to produce potent polyspecific antisera against 3 medically important vipers of Thailand and its neighboring countries, namely Cryptelytrops albolabris "White lipped pit viper" (CA), Calleoselasma rhodostoma "Malayan pit viper" (CR), and Daboia siamensis "Russell's viper" (DS). Four horses were immunized with a mixture of the 3 viper venoms using the 'low dose, low volume multi-site' immunization protocol. The antisera showed rapid rise in ELISA titers against the 3 venoms and reached plateau at about the 8th week post-immunization. The in vivo neutralization potency (P) of the antisera against CA, CR and DS venoms was 10.40, 2.42 and 0.76 mg/ml, respectively and was much higher than the minimal potency limits set by Queen Soavabha Memorial Institute (QSMI). The corresponding potency values for the QSMI monospecific antisera against CA, CR and DS venoms were 7.28, 3.12 and 1.50 mg/ml, respectively. The polyspecific antisera also effectively neutralized the procoagulant, hemorrhagic, necrotic and nephrotoxic activities of the viper venoms. This effective immunization protocol should be useful in the production of potent polyspecific antisera against snake venoms, and equine antisera against tetanus, diphtheria or rabies.
  6. Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH
    PLoS Negl Trop Dis, 2012;6(6):e1672.
    PMID: 22679522 DOI: 10.1371/journal.pntd.0001672
    BACKGROUND: Snake envenomation is a serious public health threat in the rural areas of Asian and African countries. To date, the only proven treatment for snake envenomation is antivenom therapy. Cross-neutralization of heterologous venoms by antivenom raised against venoms of closely related species has been reported. The present study examined the cross neutralizing potential of a newly developed polyvalent antivenom, termed Neuro Polyvalent Snake Antivenom (NPAV). NPAV was produced by immunization against 4 Thai elapid venoms.

    PRINCIPAL FINDINGS: In vitro neutralization study using mice showed that NPAV was able to neutralize effectively the lethality of venoms of most common Asiatic cobras (Naja spp.), Ophiophagus hannah and kraits (Bungarus spp.) from Southeast Asia, but only moderately to weakly effective against venoms of Naja from India subcontinent and Africa. Studies with several venoms showed that the in vivo neutralization potency of the NPAV was comparable to the in vitro neutralization potency. NPAV could also fully protect against N. sputatrix venom-induced cardio-respiratory depressant and neuromuscular blocking effects in anesthetized rats, demonstrating that the NPAV could neutralize most of the major lethal toxins in the Naja venom.

    CONCLUSIONS/SIGNIFICANCE: The newly developed polyvalent antivenom NPAV may find potential application in the treatment of elapid bites in Southeast Asia, especially Malaysia, a neighboring nation of Thailand. Nevertheless, the applicability of NPAV in the treatment of cobra and krait envenomations in Southeast Asian victims needs to be confirmed by clinical trials. The cross-neutralization results may contribute to the design of broad-spectrum polyvalent antivenom.

  7. Tan CH, Leong PK, Fung SY, Sim SM, Ponnudurai G, Ariaratnam C, et al.
    Acta Trop, 2011 Feb;117(2):119-24.
    PMID: 21073851 DOI: 10.1016/j.actatropica.2010.11.001
    Hypnale hypnale (hump-nosed pit viper) is a medically important venomous snake in Sri Lanka and Southwestern India. Bite of this snake may result in hemostatic dysfunction, acute kidney injury and death. Clinical studies indicated that the locally available polyvalent antivenoms produced in India are not effective against hump-nosed pit viper envenoming. Hence, there is an urgent need to search for effective antivenom. In this paper, we examined the ability of Calloselasma rhodostoma (Malayan pit viper) monovalent antivenom and the Hemato polyvalent antivenom (both produced by Thai Red Cross Society, TRCS) to neutralize the lethality and toxic effects of H. hypnale venom, as C. rhodostoma is considered a sister taxon of H. hypnale. In vitro neutralization studies showed that the Hemato polyvalent antivenom effectively neutralized the lethality of H. hypnale venom (1.52mgvenom/mL antivenom) as well as the hemorrhagic, procoagulant and necrotic activities of the venom. The monovalent C. rhodostoma antivenom could also neutralize the lethality and toxic activities of the venom, but the potency was lower. The Hemato polyvalent antivenom also effectively protected mice from the lethal and local effects of H. hypnale venom in an in vivo rodent model of envenoming. Furthermore, the polyvalent antivenom could also effectively neutralize the venom of Daboia russelii (2.50mgvenom/mL antivenom), another common cause of snake bites in Sri Lanka and South India. These findings suggested that the Hemato polyvalent antivenom may be beneficial in the antivenom treatment of H. hypnale envenoming.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links