Displaying all 4 publications

Abstract:
Sort:
  1. Preece D, Hong Ng T, Tong HK, Lewis R, Carré MJ
    Ergonomics, 2021 Sep;64(9):1205-1216.
    PMID: 33843479 DOI: 10.1080/00140139.2021.1907452
    Changing gloves more frequently is encouraged, more now than ever given the COVID-19 pandemic. When the donning process has moisture introduced, however, complications can arise, which consumes vital time. Most commonly, gloves undergo a chlorination treatment to reduce glove tack, allowing easier donning. To assess the effects of different chlorination strengths and glove thicknesses on donning, acrylonitrile butadiene gloves were manufactured at two different thicknesses (0.05 and 0.10 mm) with 4 different chlorination treatments: 0, 500, 1000 and 2000 ppm. Six participants were used to assess the time taken to don each of the glove sets with dry and wet hands (16 tests in total). Overall, the thicker gloves took longer to don, due to differences in the material stiffness hindering the donning process. The quickest performance from the chlorinated gloves was noted in the 1000 and 2000 ppm concentrations. Wet conditions also showed significant increases in the donning time.Practitioners Summary: The study was conducted based on the gaps identified in previous literature reviews which revealed the requirement for a greater understanding of glove donning process. It was found a stronger chlorination was detrimental when the hands were wet, but better when dry. Thicker gloves were also found to be detrimental. Abbreviations: PPE: personal protective equipment; NBR: acrylonitrile butadiene rubber; NRL: natural rubber latex; EN: European standards; s: seconds; Ts: tensile strength; Fb: force at break; T: thickness; Eb: elongation at break; HSD: honest significant difference; FTIR: Fourier transform infrared; covid-19: coronavirus disease 2019.
  2. Yang Y, Fedorov G, Shafranjuk SE, Klapwijk TM, Cooper BK, Lewis RM, et al.
    Nano Lett, 2015 Dec 09;15(12):7859-66.
    PMID: 26506109 DOI: 10.1021/acs.nanolett.5b02564
    Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
  3. Mohd Azmi MA, Tehrani Z, Lewis RP, Walker KA, Jones DR, Daniels DR, et al.
    Biosens Bioelectron, 2014 Feb 15;52:216-24.
    PMID: 24060972 DOI: 10.1016/j.bios.2013.08.030
    In this article we present ultra-sensitive, silicon nanowire (SiNW)-based biosensor devices for the detection of disease biomarkers. An electrochemically induced functionalisation method has been employed to graft antibodies targeted against the prostate cancer risk biomarker 8-hydroxydeoxyguanosine (8-OHdG) to SiNW surfaces. The antibody-functionalised SiNW sensor has been used to detect binding of the 8-OHdG biomarker to the SiNW surface within seconds of exposure. Detection of 8-OHdG concentrations as low as 1 ng/ml (3.5 nM) has been demonstrated. The active device has been bonded to a disposable printed circuit which can be inserted into an electronic readout system as part of an integrated Point of Care (POC) diagnostic. The speed, sensitivity and ease of detection of biomarkers using SiNW sensors render them ideal for eventual POC diagnostics.
  4. Calleja N, AbdAllah A, Abad N, Ahmed N, Albarracin D, Altieri E, et al.
    JMIR Infodemiology, 2021 09 15;1(1):e30979.
    PMID: 34604708 DOI: 10.2196/30979
    Background: An infodemic is an overflow of information of varying quality that surges across digital and physical environments during an acute public health event. It leads to confusion, risk-taking, and behaviors that can harm health and lead to erosion of trust in health authorities and public health responses. Owing to the global scale and high stakes of the health emergency, responding to the infodemic related to the pandemic is particularly urgent. Building on diverse research disciplines and expanding the discipline of infodemiology, more evidence-based interventions are needed to design infodemic management interventions and tools and implement them by health emergency responders.

    Objective: The World Health Organization organized the first global infodemiology conference, entirely online, during June and July 2020, with a follow-up process from August to October 2020, to review current multidisciplinary evidence, interventions, and practices that can be applied to the COVID-19 infodemic response. This resulted in the creation of a public health research agenda for managing infodemics.

    Methods: As part of the conference, a structured expert judgment synthesis method was used to formulate a public health research agenda. A total of 110 participants represented diverse scientific disciplines from over 35 countries and global public health implementing partners. The conference used a laddered discussion sprint methodology by rotating participant teams, and a managed follow-up process was used to assemble a research agenda based on the discussion and structured expert feedback. This resulted in a five-workstream frame of the research agenda for infodemic management and 166 suggested research questions. The participants then ranked the questions for feasibility and expected public health impact. The expert consensus was summarized in a public health research agenda that included a list of priority research questions.

    Results: The public health research agenda for infodemic management has five workstreams: (1) measuring and continuously monitoring the impact of infodemics during health emergencies; (2) detecting signals and understanding the spread and risk of infodemics; (3) responding and deploying interventions that mitigate and protect against infodemics and their harmful effects; (4) evaluating infodemic interventions and strengthening the resilience of individuals and communities to infodemics; and (5) promoting the development, adaptation, and application of interventions and toolkits for infodemic management. Each workstream identifies research questions and highlights 49 high priority research questions.

    Conclusions: Public health authorities need to develop, validate, implement, and adapt tools and interventions for managing infodemics in acute public health events in ways that are appropriate for their countries and contexts. Infodemiology provides a scientific foundation to make this possible. This research agenda proposes a structured framework for targeted investment for the scientific community, policy makers, implementing organizations, and other stakeholders to consider.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links