Displaying all 5 publications

Abstract:
Sort:
  1. Tiew PY, Lim AYH, Keir HR, Dicker AJ, Mac Aogáin M, Pang SL, et al.
    Chest, 2022 01;161(1):40-53.
    PMID: 34364870 DOI: 10.1016/j.chest.2021.07.2165
    BACKGROUND: Allergic bronchopulmonary aspergillosis (ABPA) is associated with frequent exacerbations and poor outcomes in chronic respiratory disease, but remains underdiagnosed. The role of fungal sensitization in bronchiectasis-COPD overlap (BCO) is unknown.

    RESEARCH QUESTION: What is the occurrence and clinical relevance of Aspergillus sensitization and ABPA in BCO when compared with individuals with COPD or bronchiectasis without overlap?

    STUDY DESIGN: Prospective, observational, cross-sectional study.

    METHODS: We prospectively recruited 280 patients during periods of clinical stability with bronchiectasis (n = 183), COPD (n = 50), and BCO (n = 47) from six hospitals across three countries (Singapore, Malaysia, and Scotland). We assessed sensitization responses (as specific IgE) to a panel of recombinant Aspergillus fumigatus allergens and the occurrence of ABPA in relationship to clinical outcomes.

    RESULTS: Individuals with BCO show an increased frequency and clinical severity of ABPA compared with those with COPD and bronchiectasis without overlap. BCO-associated ABPA is associated with more severe disease, higher exacerbation rates, and lower lung function when compared with ABPA occurring in the absence of overlap. BCO with a severe bronchiectasis severity index (BSI; > 9) is associated significantly with the occurrence of ABPA that is unrelated to underlying COPD severity.

    CONCLUSIONS: BCO demonstrates a high frequency of ABPA that is associated with a severe BSI (> 9) and poor clinical outcomes. Clinicians should maintain a high index of suspicion for the potential development of ABPA in patients with BCO with high BSI.

  2. Poh TY, Tiew PY, Lim AYH, Thng KX, Binte Mohamed Ali NA, Narayana JK, et al.
    Chest, 2020 08;158(2):512-522.
    PMID: 32184111 DOI: 10.1016/j.chest.2020.02.048
    BACKGROUND: Chitinase activity is an important innate immune defence mechanism against infection that includes fungi. The 2 human chitinases: chitotriosidase (CHIT1) and acidic mammalian chitinase are associated to allergy, asthma, and COPD; however, their role in bronchiectasis and bronchiectasis-COPD overlap (BCO) is unknown.

    RESEARCH QUESTION: What is the association between chitinase activity, airway fungi and clinical outcomes in bronchiectasis and bronchiectasis-COPD overlap?

    STUDY DESIGN AND METHODS: A prospective cohort of 463 individuals were recruited across five hospital sites in three countries (Singapore, Malaysia, and Scotland) including individuals who were not diseased (n = 35) and who had severe asthma (n = 54), COPD (n = 90), bronchiectasis (n = 241) and BCO (n = 43). Systemic chitinase levels were assessed for bronchiectasis and BCO and related to clinical outcomes, airway Aspergillus status, and underlying pulmonary mycobiome profiles.

    RESULTS: Systemic chitinase activity is elevated significantly in bronchiectasis and BCO and exceed the activity in other airway diseases. CHIT1 activity strongly predicts bronchiectasis exacerbations and is associated with the presence of at least one Aspergillus species in the airway and frequent exacerbations (≥3 exacerbations/y). Subgroup analysis reveals an association between CHIT1 activity and the "frequent exacerbator" phenotype in South-East Asian patients whose airway mycobiome profiles indicate the presence of novel fungal taxa that include Macroventuria, Curvularia and Sarocladium. These taxa, enriched in frequently exacerbating South-East Asian patients with high CHIT1 may have potential roles in bronchiectasis exacerbations.

    INTERPRETATION: Systemic CHIT1 activity may represent a useful clinical tool for the identification of fungal-driven "frequent exacerbators" with bronchiectasis in South-East Asian populations.

  3. Mac Aogáin M, Chandrasekaran R, Lim AYH, Low TB, Tan GL, Hassan T, et al.
    Eur Respir J, 2018 07;52(1).
    PMID: 29880655 DOI: 10.1183/13993003.00766-2018
    Understanding the composition and clinical importance of the fungal mycobiome was recently identified as a key topic in a "research priorities" consensus statement for bronchiectasis.Patients were recruited as part of the CAMEB study: an international multicentre cross-sectional Cohort of Asian and Matched European Bronchiectasis patients. The mycobiome was determined in 238 patients by targeted amplicon shotgun sequencing of the 18S-28S rRNA internally transcribed spacer regions ITS1 and ITS2. Specific quantitative PCR for detection of and conidial quantification for a range of airway Aspergillus species was performed. Sputum galactomannan, Aspergillus specific IgE, IgG and TARC (thymus and activation regulated chemokine) levels were measured systemically and associated to clinical outcomes.The bronchiectasis mycobiome is distinct and characterised by specific fungal genera, including Aspergillus, Cryptococcus and ClavisporaAspergillus fumigatus (in Singapore/Kuala Lumpur) and Aspergillus terreus (in Dundee) dominated profiles, the latter associating with exacerbations. High frequencies of Aspergillus-associated disease including sensitisation and allergic bronchopulmonary aspergillosis were detected. Each revealed distinct mycobiome profiles, and associated with more severe disease, poorer pulmonary function and increased exacerbations.The pulmonary mycobiome is of clinical relevance in bronchiectasis. Screening for Aspergillus-associated disease should be considered even in apparently stable patients.
  4. Mac Aogáin M, Tiew PY, Lim AYH, Low TB, Tan GL, Hassan T, et al.
    Am J Respir Crit Care Med, 2019 04 01;199(7):842-853.
    PMID: 30265843 DOI: 10.1164/rccm.201807-1355OC
    RATIONALE: Allergic sensitization is associated with poor clinical outcomes in asthma, chronic obstructive pulmonary disease, and cystic fibrosis; however, its presence, frequency, and clinical significance in non-cystic fibrosis bronchiectasis remain unclear.

    OBJECTIVES: To determine the frequency and geographic variability that exists in a sensitization pattern to common and specific allergens, including house dust mite and fungi, and to correlate such patterns to airway immune-inflammatory status and clinical outcomes in bronchiectasis.

    METHODS: Patients with bronchiectasis were recruited in Asia (Singapore and Malaysia) and the United Kingdom (Scotland) (n = 238), forming the Cohort of Asian and Matched European Bronchiectasis, which matched recruited patients on age, sex, and bronchiectasis severity. Specific IgE response against a range of common allergens was determined, combined with airway immune-inflammatory status and correlated to clinical outcomes. Clinically relevant patient clusters, based on sensitization pattern and airway immune profiles ("immunoallertypes"), were determined.

    MEASUREMENTS AND MAIN RESULTS: A high frequency of sensitization to multiple allergens was detected in bronchiectasis, exceeding that in a comparator cohort with allergic rhinitis (n = 149). Sensitization was associated with poor clinical outcomes, including decreased pulmonary function and more severe disease. "Sensitized bronchiectasis" was classified into two immunoallertypes: one fungal driven and proinflammatory, the other house dust mite driven and chemokine dominant, with the former demonstrating poorer clinical outcome.

    CONCLUSIONS: Allergic sensitization occurs at high frequency in patients with bronchiectasis recruited from different global centers. Improving endophenotyping of sensitized bronchiectasis, a clinically significant state, and a "treatable trait" permits therapeutic intervention in appropriate patients, and may allow improved stratification in future bronchiectasis research and clinical trials.

  5. Mac Aogáin M, Narayana JK, Tiew PY, Ali NABM, Yong VFL, Jaggi TK, et al.
    Nat Med, 2021 Apr;27(4):688-699.
    PMID: 33820995 DOI: 10.1038/s41591-021-01289-7
    Bronchiectasis, a progressive chronic airway disease, is characterized by microbial colonization and infection. We present an approach to the multi-biome that integrates bacterial, viral and fungal communities in bronchiectasis through weighted similarity network fusion ( https://integrative-microbiomics.ntu.edu.sg ). Patients at greatest risk of exacerbation have less complex microbial co-occurrence networks, reduced diversity and a higher degree of antagonistic interactions in their airway microbiome. Furthermore, longitudinal interactome dynamics reveals microbial antagonism during exacerbation, which resolves following treatment in an otherwise stable multi-biome. Assessment of the Pseudomonas interactome shows that interaction networks, rather than abundance alone, are associated with exacerbation risk, and that incorporation of microbial interaction data improves clinical prediction models. Shotgun metagenomic sequencing of an independent cohort validated the multi-biome interactions detected in targeted analysis and confirmed the association with exacerbation. Integrative microbiomics captures microbial interactions to determine exacerbation risk, which cannot be appreciated by the study of a single microbial group. Antibiotic strategies probably target the interaction networks rather than individual microbes, providing a fresh approach to the understanding of respiratory infection.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links