Displaying all 3 publications

Abstract:
Sort:
  1. Lim BY, Azmi F, Ng SF
    AAPS PharmSciTech, 2024 May 13;25(5):110.
    PMID: 38740721 DOI: 10.1208/s12249-024-02826-6
    Antimicrobial peptide LL37 is a promising antibacterial candidate due to its potent antimicrobial activity with no known bacterial resistance. However, intrinsically LL37 is susceptible to degradation in wound fluids limits its effectiveness. Bacterial toxins which are released after cell lysis are found to hinder wound healing. To address these challenges, encapsulating LL37 in microspheres (MS) and loading the MS onto activated carbon (AC)-chitosan (CS) hydrogel. This advanced wound dressing not only protects LL37 from degradation but also targets bacterial toxins, aiding in the healing of chronic wound infections. First, LL37 MS and LL37-AC-CS hydrogel were prepared and characterised in terms of physicochemical properties, drug release, and peptide-polymer compatibility. Antibacterial and antibiofilm activity, bacterial toxin elimination, cell migration, and cell cytotoxicity activities were investigated. LL37-AC-CS hydrogel was effective against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. LL37-AC-CS hydrogel bound more endotoxin than AC with CS hydrogel alone. The hydrogel also induced cell migration after 72 h and showed no cytotoxicity towards NHDF after 72 h of treatment. In conclusion, the LL37-AC-CS hydrogel was shown to be a stable, non-toxic advanced wound dressing method with enhanced antimicrobial and antitoxin activity, and it can potentially be applied to chronic wound infections to accelerate wound healing.
  2. Asma A, Ubaidah MA, Hasan SS, Wan Fazlina WH, Lim BY, Saim L, et al.
    PMID: 24427576 DOI: 10.1007/s12070-013-0621-2
    Bone anchored hearing aid (Baha) implant is an option for patient with canal atresia, single sided deafness(SSD) and chronically discharging ears despite treatments. This retrospective study was conducted from 2001 to 2011 to evaluate the surgical outcome of Baha implant surgery. Thirty-three patients were identified during this study period. Their age at implantation ranged from 5 to 40 years. Of 33 patients, 29 (87.9 %) patients had bilateral microtia and canal atresia, 3 (9.1 %) patients had unilateral microtia and canal atresia and 1 (3.0 %) patients have SSD following labyrinthitis. One patient (3.2 %) had major complication which is lost of implant due to failure of osseointegration. Soft tissue reactions were seen 7 patients (21.1 %). Of these 7 patients, 4 patients required 3-4 procedures as day care operation for excision of the skin overgrowth surrounding the abutment. Recurrent antibiotic treatment was required in 3 patients (9.7 %). None of our patient had history of intraoperative or peri-operative complication following Baha surgery. The commonest complications are local infection and inflammation at the implant site. None of our patient had history of intraoperative or peri-operative complication following Baha implant surgery.
  3. Foong PY, Voon CH, Lim BY, Teh PL, Yeoh CK, Parmin NA, et al.
    Nanotechnology, 2025 Jan 09.
    PMID: 39787627 DOI: 10.1088/1361-6528/ada7ff
    Most previously reported susceptors for microwave welding are in powder form. In this study, a thin-film susceptor was employed due to its uniform heating rate and ease of handling. Silicon carbide nanowhisker (SiCNW) were incorporated into a poly(methyl methacrylate) (PMMA) matrix to create a nanocomposite thin film, which served as the susceptor. The microwave welding process involved three straightforward steps: fabrication of the PMMA/SiCNW nanocomposite thin film, application of the nanocomposite film to the target area, and subsequent microwave heating. Upon cooling, a robust microwave-welded joint was formed. The mechanical properties and microstructure of the welded joints were characterized using single-lap shear tests, three-point bending tests, and scanning electron microscopy (SEM). Results demonstrated that the shear strength and elastic modulus of the welded joints were optimized with increased heating time and SiCNW filler loading. This optimization is attributed to the formation of a SiCNW-filled polypropylene (PP) nanocomposite layer of increasing thickness at the welded joint interface. However, the incorporation of SiCNW also constrained the mobility of the PP chains, reducing the joint's flexibility. Furthermore, the welded joint formed with the PMMA/SiCNW nanocomposite thin-film susceptor exhibited an 18.82% improvement in shear strength compared to joints formed with a powdered SiCNW susceptor. This study not only demonstrates the potential of PMMA/SiCNW nanocomposite thin films as efficient susceptors for microwave welding but also paves the way for developing high-performance polymer-based composite joints with improved mechanical properties for applications in the automotive, aerospace, and construction industries. .
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links