Displaying all 6 publications

Abstract:
Sort:
  1. Tan YF, Lim CY, Chong CW, Lim PKC, Yap IKS, Leong PP, et al.
    Intervirology, 2018;61(2):92-95.
    PMID: 30121676 DOI: 10.1159/000491602
    BACKGROUND: The giant amoebal viruses of Mimivirus and Marseillevirus are large DNA viruses and have been documented in water, soil, and sewage samples. The trend of discovering these giant amoebal viruses has been increasing throughout Asia with Japan, India, and Saudi Arabia being the latest countries to document the presence of these viruses. To date, there have been no reports of large amoebal viruses being isolated in South East Asia.

    OBJECTIVE: In this study, we aim to discover these viruses from soil samples in an aboriginal village (Serendah village) in Peninsular -Malaysia.

    METHOD AND RESULTS: We successfully detected and isolated both Mimivirus-like and Marseillevirus-like viruses using Acanthamoeba castellanii. Phylogeny analysis identified them as Mimivirus and Marseillevirus, respectively.

    CONCLUSION: The ubiquitous nature of both Mimivirus and Marseillevirus is further confirmed in our study as they are detected in higher quantity in soil that is near to water vicinities in an aboriginal village in Peninsular Malaysia. However, this study is limited by our inability to investigate the impact of Mimivirus and Marseillevirus on the aboriginal villagers. More studies on the potential impact of these viruses on human health, especially on the aborigines, are warranted.

  2. Johari NA, Voon K, Toh SY, Sulaiman LH, Yap IKS, Lim PKC
    PLoS Negl Trop Dis, 2019 Nov;13(11):e0007889.
    PMID: 31730672 DOI: 10.1371/journal.pntd.0007889
    Dengue fever is endemic in Malaysia, contributing to significant economic and health burden in the country. Aedes aegypti and Ae. albopictus are the main vectors of the dengue virus (DENV), which circulates in sylvatic and human transmission cycles and has been present in Malaysia for decades. The study investigated the presence and distribution of DENV in urban localities in the Klang Valley, Peninsular Malaysia. A total of 364 Ae. aegypti and 1,025 Ae. albopictus larvae, and 10 Ae. aegypti and 42 Ae. albopictus adult mosquitoes were screened for the presence of DENV. In total, 31 (2.2%) samples were positive, of which 2 Ae. albopictus larvae were co-infected with two serotypes, one with DENV-2 and DENV-3 and the other with DENV-3 and DENV-4. Phylogenetic analysis determined that the isolates belonged to DENV-1 genotype I (1 Ae. aegypti adult), DENV-2 (1 Ae. albopictus larva), DENV-3 genotype V (3 Ae. aegypti larvae and 10 Ae. albopictus larvae) and DENV-4 genotype IV (6 Ae. aegypti larvae and 12 Ae. albopictus larvae), a sylvatic strain of DENV-4 which was most closely related with sylvatic strains isolated from arboreal mosquitoes and sentinel monkeys in Peninsular Malaysia in the 1970s. All four DENV serotypes were co-circulating throughout the study period. The detection of a sylvatic strain of DENV-4 in Ae. aegypti and Ae. albopictus mosquitoes in urban areas in Peninsular Malaysia highlights the susceptibility of these vectors to infection with sylvatic DENV. The infectivity and vector competence of these urban mosquitoes to this strain of the virus needs further investigation, as well as the possibility of the emergence of sylvatic virus into the human transmission cycle.
  3. Lim PKC, Lee XC, Mohd Nazmi NMA, Tang YY, Wong SF, Mak JW, et al.
    Trop Biomed, 2018 Dec 01;35(4):1007-1016.
    PMID: 33601848
    Studies on parasite populations in Antarctic soils are scarce and thus little is known about the threat of these parasites towards either the natural fauna or human visitors. However, human presence in Antarctica, mainly through research and tourism, keeps increasing over time, potentially exposing visitors to zoonotic infections from Antarctic wildlife and environment. Most available literature to date has focused on faecal samples from Antarctic vertebrates. Therefore, this study addressed the possible presence of parasites in Antarctic soil that may be infectious to humans. Soil samples were obtained from five locations on Signy Island (South Orkney Islands, maritime Antarctic), namely North Point and Gourlay Peninsula (penguin rookeries), Pumphouse (relic coal-powered pump house), Jane Col (barren high altitude fellfield) and Berntsen Point (low altitude vegetated fellfield close to current research station). Approximately 10% of the soil samples (14/135) from 3 out of the 5 study sites had parasites which included Diphyllobotridae spp. eggs, Cryptosporidium sp., an apicomplexan protozoa (gregarine), Toxoplasma gondii, helminths (a cestode, Tetrabothrius sp., and a nematode larva) and mites. The presence of parasites in the 3 sites are most likely due to the presence of animal and human activities as two of these sites are penguin rookeries (North Point and Gourlay Peninsula) while the third site (Pumphouse Lake) has human activity. While some of the parasite species found in the soil samples appear to be distinctive, there were also parasites such as Cryptosporidium and Toxoplasma gondii that have a global distribution and are potentially pathogenic.
  4. Lim KL, Johari NA, Wong ST, Khaw LT, Tan BK, Chan KK, et al.
    PLoS One, 2020;15(8):e0238417.
    PMID: 32857823 DOI: 10.1371/journal.pone.0238417
    The rapid global spread of the coronavirus disease (COVID-19) has inflicted significant health and socioeconomic burden on affected countries. As positive cases continued to rise in Malaysia, public health laboratories experienced an overwhelming demand for COVID-19 screening. The confirmation of positive cases of COVID-19 has solely been based on the detection of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) using real-time reverse transcription polymerase chain reaction (qRT-PCR). In efforts to increase the cost-effectiveness and efficiency of COVID-19 screening, we evaluated the feasibility of pooling clinical Nasopharyngeal/Oropharyngeal (NP/OP) swab specimens during nucleic acid extraction without a reduction in sensitivity of qRT-PCR. Pools of 10 specimens were extracted and subsequently tested by qRT-PCR according to the WHO-Charité protocol. We demonstrated that the sample pooling method showed no loss of sensitivity. The effectiveness of the pooled testing strategy was evaluated on both retrospective and prospective samples, and the results showed a similar detection sensitivity compared to testing individual sample alone. This study demonstrates the feasibility of using a pooled testing strategy to increase testing capacity and conserve resources, especially when there is a high demand for disease testing.
  5. Voon K, Johari NA, Lim KL, Wong ST, Khaw LT, Wong SF, et al.
    Bio Protoc, 2021 May 05;11(9):e4005.
    PMID: 34124305 DOI: 10.21769/BioProtoc.4005
    The COVID-19 pandemic requires mass screening to identify those infected for isolation and quarantine. Individually screening large populations for the novel pathogen, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), is costly and requires a lot of resources. Sample pooling methods improve the efficiency of mass screening and consume less reagents by increasing the capacity of testing and reducing the number of experiments performed, and are therefore especially suitable for under-developed countries with limited resources. Here, we propose a simple, reliable pooling strategy for COVID-19 testing using clinical nasopharyngeal (NP) and/or oropharyngeal (OP) swabs. The strategy includes the pooling of 10 NP/OP swabs for extraction and subsequent testing via quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR), and may also be applied to the screening of other pathogens.
  6. Morris DE, McNeil H, Hocknell RE, Anderson R, Tuck AC, Tricarico S, et al.
    Pneumonia (Nathan), 2021 Apr 25;13(1):6.
    PMID: 33894778 DOI: 10.1186/s41479-021-00084-9
    INTRODUCTION: Pneumonia is a leading cause of death in Malaysia. Whilst many studies have reported the aetiology of pneumonia in Western countries, the epidemiology of pneumonia in Malaysia remains poorly understood. As carriage is a prerequisite for disease, we sought to improve our understanding of the carriage and antimicrobial resistance (AMR) of respiratory tract pathogens in Malaysia. The rural communities of Sarawak are an understudied part of the Malaysian population and were the focus of this study, allowing us to gain a better understanding of bacterial epidemiology in this population.

    METHODS: A population-based survey of bacterial carriage was undertaken in participants of all ages from rural communities in Sarawak, Malaysia. Nasopharyngeal, nasal, mouth and oropharyngeal swabs were taken. Bacteria were isolated from each swab and identified by culture-based methods and antimicrobial susceptibility testing conducted by disk diffusion or E test.

    RESULTS: 140 participants were recruited from five rural communities. Klebsiella pneumoniae was most commonly isolated from participants (30.0%), followed by Staphylococcus aureus (20.7%), Streptococcus pneumoniae (10.7%), Haemophilus influenzae (9.3%), Moraxella catarrhalis (6.4%), Pseudomonas aeruginosa (6.4%) and Neisseria meningitidis (5.0%). Of the 21 S. pneumoniae isolated, 33.3 and 14.3% were serotypes included in the 13 valent PCV (PCV13) and 10 valent PCV (PCV10) respectively. 33.8% of all species were resistant to at least one antibiotic, however all bacterial species except S. pneumoniae were susceptible to at least one type of antibiotic.

    CONCLUSION: To our knowledge, this is the first bacterial carriage study undertaken in East Malaysia. We provide valuable and timely data regarding the epidemiology and AMR of respiratory pathogens commonly associated with pneumonia. Further surveillance in Malaysia is necessary to monitor changes in the carriage prevalence of upper respiratory tract pathogens and the emergence of AMR, particularly as PCV is added to the National Immunisation Programme (NIP).

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links