Displaying all 3 publications

Abstract:
Sort:
  1. Han L, Gu H, Lu W, Li H, Peng WX, Ling Ma N, et al.
    Chemosphere, 2023 Dec;344:140307.
    PMID: 37769918 DOI: 10.1016/j.chemosphere.2023.140307
    As chromium (Cr) in ecosystems affects human health through food chain exposure, phytoremediation is an environmentally friendly and efficient way to reduce chromium pollution in the environment. Here, we review the mechanism of absorption, translocation, storage, detoxification, and regulation of Cr in plants. The Cr(VI) form is more soluble, mobile, and toxic than Cr(III), reflecting how various valence states of Cr affect environmental risk characteristics, physicochemical properties, toxicity, and plant uptake. Plant root's response to Cr exposure leads to reactive oxygen species (ROS) generation and apoptosis. Cell wall immobilization, vacuole compartmentation, interaction of defense proteins and organic ligand with Cr, and removal of reactive oxygen species by antioxidants continue plant life. In addition, the combined application of microorganisms, genetic engineering, and the addition of organic acids, nanoparticles, fertilization, soil amendments, and other metals could accelerate the phytoremediation process. This review provides efficient methods to investigate and understand the complex changes of Cr metabolism in plants. Preferably, fast-growing, abundantly available biomass species should be modified to mitigate Cr pollution in the environment as these green and efficient remediation technologies are necessary for the protection of soil and water ecology.
  2. Li Y, Ling Ma N, Chen H, Zhong J, Zhang D, Peng W, et al.
    Environ Int, 2023 Nov;181:108279.
    PMID: 37924601 DOI: 10.1016/j.envint.2023.108279
    According to the World Health Organization, women's breast cancer is among the most common cancers with 7.8 million diagnosed cases during 2016-2020 and encompasses 15 % of all female cancer-related mortalities. These mortality events from triple-negative breast cancer are a significant health issue worldwide calling for a continuous search of bioactive compounds for better cancer treatments. Historically, plants are important sources for identifying such new bioactive chemicals for treatments. Here we use high-throughput screening and mass spectrometry analyses of extracts from 100 plant species collected in Chinese ancient forests to detect novel bioactive breast cancer phytochemicals. First, to study the effects on viability of the plant extracts, we used a MTT and CCK-8 cytotoxicity assay employing triple-negative breast cancer (TNBC) MDA-MB-231 and normal epithelial MCF-10A cell lines and cell cycle arrest to estimate apoptosis using flow cytometry for the most potent three speices. Based on these analyses, the final most potent extracts were from the Amur honeysuckle (Lonicera maackii) wood/root bark and Nigaki (Picrasma quassioides) wood/root bark. Then, 5 × 106 MDA-MB-231 cells were injected subcutaneously into the right hind leg of nude mice and a tumour was allowed to grow before treatment for seven days. Subsequently, the four exposed groups received gavage extracts from Amur honeysuckle and Nigaki (Amur honeysuckle wood distilled water, Amur honeysuckle root bark ethanol, Nigaki wood ethanol or Nigaki root bark distilled water/ethanol (1:1) extracts) in phosphate-buffered saline (PBS), while the control group received only PBS. The tumour weight of treated nude mice was reduced significantly by 60.5 % within 2 weeks, while on average killing 70 % of the MDA-MB-231 breast cancer cells after 48 h treatment (MTT test). In addition, screening of target genes using the Swiss Target Prediction, STITCH, STRING and NCBI-gene database showed that the four plant extracts possess desirable activity towards several known breast cancer genes. This reflects that the extracts may kill MBD-MB-231 breast cancer cells. This is the first screening of plant extracts with high efficiency in 2 decades, showing promising results for future development of novel cancer treatments.
  3. Yue X, Ling Ma N, Zhong J, Yang H, Chen H, Yang Y, et al.
    Environ Res, 2024 Jan 15;241:117474.
    PMID: 37879390 DOI: 10.1016/j.envres.2023.117474
    Here, we collected 154 plant species in China ancient forests looking for novel efficient bioactive compounds for cancer treatments. We found 600 bioactive phyto-chemicals that induce apoptosis of liver cancer cell in vitro. First, we screen the plant extract's in vitro cytotoxicity inhibition of cancer cell growth using in vitro HepG2 cell lines and MTT cytotoxicity. The results from these initial MTT in vitro cytotoxicity tests show that the most efficient plants towards hepatoma cytoxicity is Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus). We then used in cell-counting kit-8 (CCK-8) to further understand in vivo tumor growth using nude mice and GC-MS and LC-QTOF-MS to analyze the composition of compounds in the extracts. Extracted chemically active molecules analyzed by network pharmacology showed inhibition on the growth of liver cancer cells by acting on multiple gene targets, which is different from the currently used traditional drugs acting on only one target of liver cancer cells. Extracts from Cephalotaxus sinensis, mint bush (Elsholtzia stauntonii) and winged spindle tree (Euonymus alatus) induce apoptosis in hepatoma cancer cell line HepG2 with a killing rate of more than 83% and a tumor size decrease by 62-67% and a killing rate of only 6% of normal hepatocyte LO2. This study highlight efficient candidate species for cancer treatment providing a basis for future development of novel plant-based drugs to help meeting several of the UN SDGs and planetary health.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links