To reconcile and unify available results regarding paraquat exposure and Parkinson's disease (PD), we conducted a systematic review and meta-analysis to provide a quantitative estimate of the risk of PD associated with paraquat exposure. Six scientific databases including PubMed, Cochrane libraries, EMBASE, Scopus, ISI Web of Knowledge, and TOXLINE were systematically searched. The overall odds ratios (ORs) with corresponding 95% CIs were calculated using a random-effects model. Of 7,309 articles identified, 13 case control studies with 3,231 patients and 4,901 controls were included into our analysis. Whereas, one prospective cohort studies was included into our systematic review. A subsequent meta-analysis showed an association between PD and paraquat exposure (odds ratio = 1.64 (95% CI: 1.27-2.13; I2 = 24.8%). There is a statistically significant association between paraquat exposure and PD. Thus, future studies regarding paraquat and Parkinson's disease are warranted.
Smoking and asbestos exposure are important risks for lung cancer. Several epidemiological studies have linked asbestos exposure and smoking to lung cancer. To reconcile and unify these results, we conducted a systematic review and meta-analysis to provide a quantitative estimate of the increased risk of lung cancer associated with asbestos exposure and cigarette smoking and to classify their interaction. Five electronic databases were searched from inception to May, 2015 for observational studies on lung cancer. All case-control (N = 10) and cohort (N = 7) studies were included in the analysis. We calculated pooled odds ratios (ORs), relative risks (RRs) and 95% confidence intervals (CIs) using a random-effects model for the association of asbestos exposure and smoking with lung cancer. Lung cancer patients who were not exposed to asbestos and non-smoking (A-S-) were compared with; (i) asbestos-exposed and non-smoking (A+S-), (ii) non-exposure to asbestos and smoking (A-S+), and (iii) asbestos-exposed and smoking (A+S+). Our meta-analysis showed a significant difference in risk of developing lung cancer among asbestos exposed and/or smoking workers compared to controls (A-S-), odds ratios for the disease (95% CI) were (i) 1.70 (A+S-, 1.31-2.21), (ii) 5.65; (A-S+, 3.38-9.42), (iii) 8.70 (A+S+, 5.8-13.10). The additive interaction index of synergy was 1.44 (95% CI = 1.26-1.77) and the multiplicative index = 0.91 (95% CI = 0.63-1.30). Corresponding values for cohort studies were 1.11 (95% CI = 1.00-1.28) and 0.51 (95% CI = 0.31-0.85). Our results point to an additive synergism for lung cancer with co-exposure of asbestos and cigarette smoking. Assessments of industrial health risks should take smoking and other airborne health risks when setting occupational asbestos exposure limits.