Affiliations 

  • 1 Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
  • 2 Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
  • 3 Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Center of Pharmaceutical Outcomes Research, Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; School of Pharmacy, Monash University Malaysia, Selangor, Malaysia; School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America; School of Population Health, University of Queensland, Brisbane, Australia
  • 4 Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
  • 5 Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand; Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, United States of America
PLoS One, 2015;10(8):e0135798.
PMID: 26274395 DOI: 10.1371/journal.pone.0135798

Abstract

Smoking and asbestos exposure are important risks for lung cancer. Several epidemiological studies have linked asbestos exposure and smoking to lung cancer. To reconcile and unify these results, we conducted a systematic review and meta-analysis to provide a quantitative estimate of the increased risk of lung cancer associated with asbestos exposure and cigarette smoking and to classify their interaction. Five electronic databases were searched from inception to May, 2015 for observational studies on lung cancer. All case-control (N = 10) and cohort (N = 7) studies were included in the analysis. We calculated pooled odds ratios (ORs), relative risks (RRs) and 95% confidence intervals (CIs) using a random-effects model for the association of asbestos exposure and smoking with lung cancer. Lung cancer patients who were not exposed to asbestos and non-smoking (A-S-) were compared with; (i) asbestos-exposed and non-smoking (A+S-), (ii) non-exposure to asbestos and smoking (A-S+), and (iii) asbestos-exposed and smoking (A+S+). Our meta-analysis showed a significant difference in risk of developing lung cancer among asbestos exposed and/or smoking workers compared to controls (A-S-), odds ratios for the disease (95% CI) were (i) 1.70 (A+S-, 1.31-2.21), (ii) 5.65; (A-S+, 3.38-9.42), (iii) 8.70 (A+S+, 5.8-13.10). The additive interaction index of synergy was 1.44 (95% CI = 1.26-1.77) and the multiplicative index = 0.91 (95% CI = 0.63-1.30). Corresponding values for cohort studies were 1.11 (95% CI = 1.00-1.28) and 0.51 (95% CI = 0.31-0.85). Our results point to an additive synergism for lung cancer with co-exposure of asbestos and cigarette smoking. Assessments of industrial health risks should take smoking and other airborne health risks when setting occupational asbestos exposure limits.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.