Displaying all 4 publications

Abstract:
Sort:
  1. Bharatham H, Md Zuki Abu Bakar Zakaria, Perimal EK, Loqman Mohamad Yusof, Muhajir Hamid
    Sains Malaysiana, 2014;43:1023-1029.
    Molluscan shells are attracting research interest due to the diverse application properties possessed. As shells are very similar to bones, this study was conducted to analyze the mineral and physiochemical composition of Cockle (Anadara granosa) shell and three other types of molluscan shell, namely Strombus canarium, Oliva sayana and Terebra dislocata as potential biomaterial for bone tissue engineering applications. Approximately 200 g of shells from each species were processed and powdered for the purpose of this study. Carbon was analyzed using the carbon analyzer while minerals and heavy metals through ICP-MS. The phase purity and crystallographic structures of the powders were identified using X-Ray Diffractometer (XRD) while the chemical functionality was determined using the Fourier transform infrared (FTIR) spectrophotometer. The analysis showed that Cockle shells contained higher content of calcium and carbon including varying amount of other minor elements comparatively. However, all four types of shell powders were found to contain below detectable levels of toxic elements. Physiochemical analysis on phase purity and crystallographic structures showed similar characteristics of carbonate group present in all four shell types. A predominantly aragonite form of calcium carbonate was detected in both XRD diffractogram and FTIR spectra for all samples. Our findings demonstrated that different types of molluscan shells have almost similar mineral and physiochemical characteristics and a predominantly aragonite form of calcium carbonate that provides a strong basis for their use as a potential bone tissues engineering material.
  2. Ali AK, Abubakar AA, Kaka U, Radzi Z, Khairuddin NH, Yusoff MSM, et al.
    Vet World, 2018 Dec;11(12):1706-1711.
    PMID: 30774262 DOI: 10.14202/vetworld.2018.1706-1711
    Aim: Tissue expansion is an applicable technique to reconstruct many surgical defects. The aim of this research was to evaluate the histological changes caused by immediate skin tissue expansion in rats as an animal model.

    Materials and Methods: Immediate skin tissue expansion in 18 adult female rats was performed using three different sizes (small, medium, and big) of polymethylmethacrylate tissue expanders at the dorsal surface of the metatarsal area of the right limb. The contralateral limb was served as the control. The tissue expanders were surgically implanted and kept for 15 days.

    Results: The immediate skin expansion resulted in histological changes such as the increased thickness of the epidermal layer, the reduction of the dermal layer, an elevated number of fibroblast as well as increased vascularity. Furthermore, skin adnexal structures such as hair follicles and sebaceous glands were farther apart.

    Conclusion: The rat skin was able to rapidly adjust and compensate against a specific range of immediate mechanical expansion. The histological changes suggest that the tissues were prepared to withstand the increased external forces, in addition to create possibly additional skin in a relatively short-term period.

  3. Jaji AZ, Zakaria ZAB, Mahmud R, Loqman MY, Hezmee MNM, Abba Y, et al.
    J Nanopart Res, 2017;19(5):175.
    PMID: 28553160 DOI: 10.1007/s11051-017-3849-z
    Calcium carbonate nanoparticles have shown promising potentials in the delivery of drugs and metabolites. There is however, a paucity of information on the safety of their intentional or accidental over exposures to biological systems and general health safety. To this end, this study aims at documenting information on the safety of subcutaneous doses of biogenic nanocrystals of aragonite polymorph of calcium carbonate derived from cockle shells (ANC) in Sprague-Dawley (SD) rats. ANC was synthesized using the top-down method, characterized using the transmission electron microscopy and field emission scanning electron microscope and its acute and repeated dose 28-day trial toxicities were evaluated in SD rats. The results showed that the homogenous 30 ± 5 nm-sized spherical pure aragonite nanocrystals were not associated with mortality in the rats. Severe clinical signs and gross and histopathological lesions, indicating organ toxicities, were recorded in the acute toxicity (29,500 mg/m2) group and the high dose (5900 mg/m2) group of the repeated dose 28-day trial. However, the medium- (590 mg/m2 body weight) and low (59 mg/m2)-dose groups showed moderate to mild lesions. The relatively mild lesions observed in the low toxicity dosage group marked the safety margin of ANC in SD rats. It was concluded from this study that the toxicity of CaCO3 was dependent on the particulate size (30 ± 5 nm) and concentration and the route of administration used.
  4. Jaji AZ, Bakar MZ, Mahmud R, Loqman MY, Hezmee MN, Isa T, et al.
    Nanotechnol Sci Appl, 2017;10:23-33.
    PMID: 28176933 DOI: 10.2147/NSA.S113030
    Calcium carbonate is a porous inorganic nanomaterial with huge potential in biomedical applications and controlled drug delivery. This study aimed at evaluating the physicochemical properties and in vitro efficacy and safety of cockle shell aragonite calcium carbonate nanocrystals (ANC) as a potential therapeutic and hormonal delivery vehicle for osteoporosis management. Free and human recombinant parathyroid hormone 1-34 (PTH 1-34)-loaded cockle shell aragonite calcium carbonate nanocrystals (PTH-ANC) were synthesized and evaluated using standard procedures. Transmission electron microscopy and field emission scanning electron microscopy results demonstrated highly homogenized spherical-shaped aragonite nanocrystals of 30±5 nm diameter. PTH-ANC had a zeta potential of -27.6±8.9 mV. The encapsulation efficiency of the formulation was found to be directly proportional to the concentrations of the drug fed. The X-ray diffraction patterns revealed strong crystallizations with no positional change of peaks before and after PTH-ANC synthesis. Fourier transform infrared spectroscopy demonstrated no detectable interactions between micron-sized aragonite and surfactant at molecular level. PTH-ANC formulation was stabilized at pH 7.5, enabling sustained slow release of PTH 1-34 for 168 h (1 week). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytocompatibility assay in Human Foetal Osteoblast Cell Line hFOB 1.19 showed that ANC can safely support osteoblast proliferation up to 48 h whereas PTH-ANC can safely support the proliferation at 72 h and beyond due to the sustained slow release of PTH 1-34. It was concluded that due to its biogenic nature, ANC is a cytocompatible antiosteoporotic agent. It doubles as a nanocarrier for the enhancement of efficacy and safety of the bone anabolic PTH 1-34. ANC is expected to reduce the cost, dosage, and dose frequency associated with the use of PTH 1-34 management of primary and secondary forms of osteoporosis.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links