Displaying all 2 publications

Abstract:
Sort:
  1. Zhu J, Zhou Y, Wei Y, Luo Q, Huang H
    Heliyon, 2024 Mar 15;10(5):e26427.
    PMID: 38434358 DOI: 10.1016/j.heliyon.2024.e26427
    For the classical multi-objective optimal power flow (MOOPF) problem, only traditional thermal power generators are used in power systems. However, there is an increasing interest in renewable energy sources and the MOOPF problem using wind and solar energy has been raised to replace part of the thermal generators in the system with wind turbines and solar photovoltaics (PV) generators. The optimization objectives of MOOPF with renewable energy sources vary with the study case. They are mainly a combination of 2-4 objectives from fuel cost, emissions, power loss and voltage deviation (VD). In addition, reasonable prediction of renewable power is a major difficulty due to the discontinuous, disordered and unstable nature of renewable energy. In this paper, the Weibull probability distribution function (PDF) and lognormal PDF are applied to evaluate the available wind and available solar power, respectively. In this paper, an enhanced multi-objective mayfly algorithm (NSMA-SF) based on non-dominated sorting and the superiority of feasible solutions is implemented to tackle the MOOPF problem with wind and solar energy. The algorithm NSMA-SF is applied to the modified IEEE-30 and standard IEEE-57 bus test systems. The simulation results are analyzed and compared with the recently reported MOOPF results.
  2. Xiong C, Li P, Luo Q, Phan CW, Li Q, Jin X, et al.
    PMID: 34394384 DOI: 10.1155/2021/5563367
    Morels (Morchella spp.) are a genus of edible fungi with important economic and medicinal value. In this study, a novel peptide (MIPP) was extracted from the fruiting bodies of Morchella importuna using gel filtration chromatography. Structural analysis showed that the molecular mass of MIPP is 831 Da, and it has a simple amino acid sequence: Ser-Leu-Ser-Leu-Ser-Val-Ala-Arg. To explore the antitumor activity of MIPP, the effect of MIPP on HeLa cell apoptosis and the underlying preventative mechanisms were investigated. Results showed that MIPP reduced the viability of HeLa cells in a concentration-dependent manner. TUNEL analysis and flow cytometric examination showed that MIPP decreased cell proliferation via a mitochondrial-dependent pathway, as manifested by downregulation of Bcl-2/Bax, promotion of the movement of cytochrome C from the mitochondria to the cytoplasm, and triggering of caspase-9 and caspase-3. Therefore, MIPP may be a promising tumor-preventive agent, especially in human cervical cancer.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links