Displaying all 6 publications

Abstract:
Sort:
  1. Lv X, Zhong G, Yao H, Wu J, Ye S
    Int J Clin Pharmacol Ther, 2021 Nov;59(11):725-733.
    PMID: 34448694 DOI: 10.5414/CP203986
    OBJECTIVE: An earlier three-way crossover study evaluating bioequivalence of 3 cefalexin formulations (capsule for reference, capsule and tablet for test) in healthy subjects in Malaysia showed that the intra-individual coefficients of variation were 9.25% for AUC0-t, 9.54% for AUC0-∞, and 13.90% for Cmax. It is preliminarily stated that cefalexin is not a high-variation product. The here-presented clinical study in China was carried out to analyze the pharmacokinetic properties of two preparations in fasting and postprandial condition to assess the bioequivalence of the test preparation and reference preparation when administered on a fasting and postprandial basis in healthy Chinese subjects and to observe the safety of the test preparation and reference preparation in healthy Chinese subjects.

    MATERIALS AND METHODS: In this trial, a total of 56 eligible subjects were randomly assigned to the fasting group and the postprandial group. The two groups were given 250 mg of the test and reference preparation, respectively. Liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was applied to determine the plasma concentration of cefalexin. PhoenixWinNonlin software (V7.0) was used to calculate the pharmacokinetic parameters of cefalexin using the non-compartmental model (NCA), and the bioequivalence and safety results were calculated by SAS (V9.4) software.

    RESULTS: The main pharmacokinetic parameters of the test and reference preparations were as follows, the fasting group: Cmax 12.59 ± 2.65 μg/mL, 12.72 ± 2.28 μg/mL; AUC0-8h 20.43 ± 3.47 h×μg/mL, 20.66 ± 3.38 h×μg/mL; AUC0-∞ 20.77 ± 3.53 h×μg/mL, 21.02 ± 3.45 h×μg/mL; the postprandial group: Cmax 5.25 ± 0.94 μg/mL, 5.23 ± 0.80 μg/mL; AUC0-10h 16.92 ± 2.03 h×μg/mL, 17.09 ± 2.31 h×μg/mL; AUC0-∞ 17.33 ± 2.09 h×μg/mL, 17.67 ± 2.45 h×μg/mL.

    CONCLUSION: The 90% confidence intervals of geometric mean ratios of test preparation and reference preparation were calculated, and the 90% confidence intervals of geometric mean ratios of Cmax, AUC0-10h, and AUC0-∞ were within the 80.00% ~ 125.00% range in both groups. Both Cmax and AUC met the pre-determined criteria for assuming bioequivalence. The test and reference products were bioequivalent after administration under fasting as well as under fed conditions in healthy Chinese subjects. This study may suggest that successful generic versions of cefalexin not only guarantee the market supply of such drugs but can also improve the safety and effectiveness and quality controllability of cefalexin through a new process and a new drug composition ratio.

  2. Yu J, Lv X, Yang Z, Gao S, Li C, Cai Y, et al.
    Viruses, 2018 10 19;10(10).
    PMID: 30347642 DOI: 10.3390/v10100572
    Nipah disease is a highly fatal zoonosis which is caused by the Nipah virus. The Nipah virus is a BSL-4 virus with fruit bats being its natural host. It is mainly prevalent in Southeast Asia. The virus was first discovered in 1997 in Negeri Sembilan, Malaysia. Currently, it is mainly harmful to pigs and humans with a high mortality rate. This study describes the route of transmission of the Nipah virus in different countries and analyzes the possibility of the primary disease being in China and the method of its transmission to China. The risk factors are analyzed for different susceptible populations to Nipah disease. The aim is to improve people's risk awareness and prevention and control of the disease and reduce its risk of occurring and spreading in China.
  3. Sun B, Hu M, Lan X, Waiho K, Lv X, Xu C, et al.
    Environ Int, 2024 Apr 20;187:108681.
    PMID: 38663234 DOI: 10.1016/j.envint.2024.108681
    Exposing marine organisms to contemporary contaminants, such as perfluorooctanoic acid (PFOA) and nano-titanium dioxide (nano-TiO2), can induce multifaceted physiological consequences. Our investigation centered on the responses of the mussel, Mytilus coruscus, to these agents. We discerned pronounced disruptions in gill filament connections, pivotal structures for aquatic respiration, suggesting compromised oxygen uptake capabilities. Concurrently, the respiratory rate exhibited a marked decline, indicating a respiratory distress. Furthermore, the mussels' clearance rate, a metric of their filtration efficacy, diminished, suggesting the potential for bioaccumulation of deleterious substances. Notably, the co-exposure of PFOA and nano-TiO2 exhibits interactive effects on the physiological performance of the mussels. The mussels' digestive performance waned in the face of heightened PFOA and nano-TiO2 concentrations, possibly hampering nutrient assimilation and energy accrual. This was mirrored in the noticeable contraction of their energy budget, suggesting long-term growth repercussions. Additionally, the dysregulation of the gut microbiota and the reduction in its diversity further confirm alterations in intestinal homeostasis, subsequently impacting its physiological functions and health. Collectively, these findings underscore the perils posed by escalated PFOA and nano-TiO2 levels to marine mussels, accentuating the need for a deeper understanding of nanoparticle-pollutant synergies in marine ecosystems.
  4. Yu Pan C, Han P, Liu X, Yan S, Feng P, Zhou Z, et al.
    Diabetes Metab Res Rev, 2014 Nov;30(8):726-35.
    PMID: 24639432 DOI: 10.1002/dmrr.2541
    BACKGROUND: This study assessed the efficacy and safety of the once-daily glucagon-like peptide-1 receptor agonist, lixisenatide, in Asian patients with type 2 diabetes mellitus inadequately controlled on metformin ± sulfonylurea.
    METHODS: In this 24-week, double-blind, placebo-controlled, multinational study, patients were randomized to lixisenatide 20 µg once daily or placebo. The primary endpoint was absolute change in glycated haemoglobin (HbA1c ) from baseline to week 24.
    RESULTS: A total of 391 patients were randomized. Lixisenatide significantly reduced HbA1c levels compared with placebo (LS mean difference: -0.36%, p = 0.0004). A significantly higher proportion of lixisenatide-treated patients achieved HbA1c targets of <7% (p = 0.003) and ≤6.5% (p = 0.001) versus placebo. Lixisenatide was associated with a statistically significant reduction in 2-h postprandial plasma glucose after a standardized breakfast versus placebo (LS mean difference: -4.28 mmol/L, p 
  5. Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, et al.
    J Environ Manage, 2023 Oct 15;344:118718.
    PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718
    Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
  6. Zhu Y, Hu Z, Lv X, Huang R, Gu X, Zhang C, et al.
    Transbound Emerg Dis, 2022 Jul;69(4):1782-1793.
    PMID: 33993639 DOI: 10.1111/tbed.14155
    Since 2010, several duck Tembusu viruses (DTMUVs) have been isolated from infected ducks in China, and these virus strains have undergone extensive variation over the years. Although the infection rate is high, the mortality rate is usually relatively low-~5%-30%; however, since fall 2019, an infectious disease similar to DTMUV infection but with a high mortality rate of ~50% in goslings has been prevalent in Anhui Province, China. The present study identified a new Tembusu virus, designated DTMUV/Goose/China/2019/AQ-19 (AQ-19), that is believed to be responsible for the noticeably high mortality in goslings. To investigate the genetic variation of this strain, its entire genome was sequenced and analysed for specific variations, and goslings and mice were challenged with the isolated virus to investigate its pathogenicity. The AQ-19 genome shared only 94.3%-96.9% and 90.9% nucleotide identity with other Chinese and Malaysian DTMUVs, respectively; however, AQ-19 has high homology with Thailand DTMUVs (97.2%-98.1% nucleotide identity). Phylogenetic analysis of the E gene revealed that AQ-19 and most of Thailand DTMUVs form a branch separate from any of the previously reported DTMUV strains in China. After the challenge, some goslings and mice showed typical clinical signs of DTMUV, particularly severe neurological dysfunction. AQ-19 has high virulence in goslings and mice, resulting in 60% and 70% mortality through intramuscular and intracerebral routes, respectively. Pathological examination revealed severe histological lesions in the brain and liver of the infected goslings and mice. Taken together, these results demonstrated the emergence of a novel Tembusu virus with high virulence circulating in goslings in China for the first time, and our findings highlight the high genetic diversity of DTMUVs in China. Further study of the pathogenicity and host range of this novel Tembusu virus is particularly important.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links