Displaying all 6 publications

Abstract:
Sort:
  1. Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA
    Mol Biochem Parasitol, 2023 Feb;253:111541.
    PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541
    Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
  2. Siddiqui R, Maciver SK, Anuar TS, Khan NA
    Am J Vet Res, 2023 Aug 01;84(8).
    PMID: 37353216 DOI: 10.2460/ajvr.23.03.0061
    OBJECTIVE: The objective of this study was to determine bacterial flora throughout the gastrointestinal tract of a saltwater crocodile (Crocodylus porosus) using 16S rRNA gene analysis.

    ANIMALS: A convention on international trade in endangered species (CITES) of wild fauna and flora registered crocodile farm, provided a healthy male saltwater crocodile, Crocodylus porosus for this study.

    PROCEDURES: Three samples were taken from the oral cavity, 3 samples from the proximal region of the small intestine (jejunum), and 3 samples from the distal part of the large intestine of the gastrointestinal tract of C. porosus were obtained using sterile cotton swabs. Next, swabs were placed in 15 mL sterile centrifuge tubes, individually, and kept on ice for immediate transportation to the laboratory. This was followed by 16S rRNA gene analysis using specific primers (341F-CCTAYGGGRBGCASCAG, and 806R-GGACTACNNGGGTATCTAAT). Amplicons were sequenced on Illumina paired-end platform, and bacterial gastrointestinal communities, the relative abundance of taxa, and principal component and coordinate analysis were performed.

    RESULTS: The findings revealed that bacterial community structures from differing regions exhibited several differences. The number of observed bacterial operational taxonomic units (OTUs) was 153 in the oral cavity, 239 in the small intestine, and 119 in the large intestine of C. porosus. The small intestine reflects the highest richness. In contrast, the large intestine exhibited the least richness of microbial communities. Relative abundance of taxa showed that Proteobacteria, Bacteroidetes, and Firmicutes were dominant in all 3 sample sites. Pseudomonas differed in the oral cavity and the large intestine, with the latter exhibiting less distribution of Pseudomonas. Stenotrophomonas and Castellaniella were higher in the oral cavity, while the relative abundance of Comamonas and Salmonella was higher in the small intestine. Conversely, the relative abundance of Salmonella and Pannonibacter was augmented in the large intestine.

    CLINICAL RELEVANCE: For the first time, this study demonstrates the bacterial diversity along the segments of the gastrointestinal tract of C. porosus. Bacterial flora varies throughout the gastrointestinal tract. Although further studies using large cohorts are warranted; however, our findings suggest that microbiome composition may have the potential as a biomarker in determining the overall health and well-being of C. porosus.

  3. Kang AY, Park AY, Shin HJ, Khan NA, Maciver SK, Jung SY
    Exp Parasitol, 2018 Sep;192:19-24.
    PMID: 30031120 DOI: 10.1016/j.exppara.2018.07.009
    Amoebae from the genus Acanthamoeba are facultative pathogens of humans and other animals. In humans they most frequently infect the eye causing a sight threatening infection known as Acanthamoeba keratitis (AK), and also cause an often fatal encephalitis (GAE). A mannose-binding protein (MBP) has been identified as being important for Acanthamoeba infection especially in AK. This lectin has previously been characterized from Acanthamoeba castellanii as consisting of multiple 130 kDa subunits. MBP expression correlates with pathogenic potential and is expressed in a number of Acanthamoeba species. Here we report the purification of a similar lectin from Acanthamoeba culbertsoni and the production of a monoclonal antibody to it. The A. culbertsoni MBP was isolated by affinity chromatography using α-D-mannose agarose and has an apparent molecular weight of 83 kDa. The monoclonal antibody is an IgM that is useful in both western blots and immunofluorescence. We expect that this antibody will be useful in the study of the pathology of A. culbertsoni and in its identification in clinical samples.
  4. Mungroo MR, Tong T, Khan NA, Anuar TS, Maciver SK, Siddiqui R
    Int Microbiol, 2021 Aug;24(3):363-371.
    PMID: 33754231 DOI: 10.1007/s10123-021-00171-3
    Acanthamoeba keratitis is a sight-endangering eye infection, and causative organism Acanthamoeba presents a significant concern to public health, given escalation of contact lens wearers. Contemporary therapy is burdensome, necessitating prompt diagnosis and aggressive treatment. None of the contact lens disinfectants (local and international) can eradicate Acanthamoeba effectively. Using a range of compounds targeting cellulose, ion channels, and biochemical pathways, we employed bioassay-guided testing to determine their anti-amoebic effects. The results indicated that acarbose, indaziflam, terbuthylazine, glimepiride, inositol, vildagliptin and repaglinide showed anti-amoebic effects. Compounds showed minimal toxicity on human cells. Therefore, effects of the evaluated compounds after conjugation with nanoparticles should certainly be the subject of future studies and will likely lead to promising leads for potential applications.
  5. Khan NA, Soopramanien M, Maciver SK, Anuar TS, Sagathevan K, Siddiqui R
    Molecules, 2021 Aug 18;26(16).
    PMID: 34443585 DOI: 10.3390/molecules26164999
    Crocodiles are remarkable animals that have the ability to endure extremely harsh conditions and can survive up to a 100 years while being exposed to noxious agents that are detrimental to Homo sapiens. Besides their immunity, we postulate that the microbial gut flora of crocodiles may produce substances with protective effects. In this study, we isolated and characterized selected bacteria colonizing the gastrointestinal tract of Crocodylusporosus and demonstrated their inhibitory effects against three different cancerous cell lineages. Using liquid chromatography-mass spectrometry, several molecules were identified. For the first time, we report partial analyses of crocodile's gut bacterial molecules.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links