Displaying all 3 publications

Abstract:
Sort:
  1. Yazid SNE, Thanggavelu H, Mahror N, Selamat J, Samsudin NIP
    Int J Food Microbiol, 2018 Oct 03;282:57-65.
    PMID: 29913332 DOI: 10.1016/j.ijfoodmicro.2018.06.007
    In studying the ecophysiology of fungal phytopathogens, several stages are involved (in vitro, greenhouse, in planta). Most in vitro studies extensively utilise the general growth media such as Potato Dextrose Agar and Malt Extract Agar. Although the crop components in these media serve as excellent carbon sources and yield luxuriant growth, they are not naturally contaminated with Aspergillus flavus and thus might result in under- or overestimation of its actual toxigenic potentials. Empirical data on the formulation of semi-synthetic growth medium mimicking the natural crop commonly contaminated by A. flavus for the ecophysiological studies in vitro are scarce. The present work was aimed at investigating the ecophysiology of A. flavus on commercial growth media (PDA, MEA); formulating maize- and peanut-based semi-synthetic growth media using two methods of raw material preparation (milling, hot water extraction) at different concentrations (1, 3, 5, 7, 9% w/v), and comparing the ecophysiological parameters between commercial and formulated growth media. Growth rates were obtained by computing the hyphal expansion data into y = mx + c equation. AFB1 was quantified using high performance liquid chromatography with fluorescence detector. Formulated media were found to yield significantly higher growth rates when compared to commercial media. However, commercial media yielded significantly higher AFB1 when compared to all formulated media. Between the two formulations, milling yielded significantly higher growth rates and AFB1 when compared to hot water extraction. Although in vitro data cannot directly extrapolate in planta performance, results obtained in the present work can be used to gauge the actual toxigenic potential of A. flavus in maize and peanut agro-ecosystems.
  2. Rahman MAH, Selamat J, Samsudin NIP, Shaari K, Mahror N, John JM
    Food Sci Nutr, 2022 Nov;10(11):3993-4002.
    PMID: 36348788 DOI: 10.1002/fsn3.2995
    Aspergillus section Flavi constitutes several species of opportunistic fungi, notable among them are A. flavus and A. parasiticus, capable of surviving harsh conditions and colonizing a wide range of agricultural products pre- and postharvest. Physical and chemical control methods are widely applied in order to mitigate the invasion of A. flavus in crops. However, physical control is not suitable for large scale and chemical control often leads to environmental pollution, whereas biological control offers a safer, environmentally friendly, and economical alternative. The present study aimed to investigate the antagonism of several non-aflatoxigenic A. flavus strains against the aflatoxigenic ones in vitro (semisynthetic peanut growth medium; MPA) in terms of colony growth rate and AFB1 inhibition. Different peanut concentrations were used to obtain the optimum peanut concentration in the formulated growth medium. A dual culture assay was performed to assess the antagonism of nonaflatoxigenic strains against the aflatoxigenic ones. Results revealed that 9% MPA exhibited the highest growth and AFB1 inhibition by nonaflatoxigenic strains. It was also found that different nonaflatoxigenic strains exhibited different antagonism against the aflatoxigenic ones which ranged from 11.09 ± 0.65% to 14.06 ± 0.14% for growth inhibition, and 53.97 ± 2.46% to 72.64 ± 4.54% for AFB1 inhibition. This variability could be due to the difference in antagonistic metabolites produced by different nonaflatoxigenic strains assessed in the present study. Metabolomics study to ascertain the specific metabolites that conferred the growth and aflatoxin inhibition is ongoing.
  3. Liao T, Li XR, Fan L, Zhang B, Zheng WM, Hua JJ, et al.
    Front Microbiol, 2024;15:1433127.
    PMID: 39234548 DOI: 10.3389/fmicb.2024.1433127
    Kombucha, a fermented tea prepared with a symbiotic culture of bacteria and yeast (SCOBY), offers a unique and unpredictable home-brewed fermentation process. Therefore, the need for a controlled kombucha fermentation process has become evident, which requiring a thorough understanding of the microbial composition and its relationship with the metabolites produced. In this study, we investigated the dynamics of microbial communities and metabolites over a 12-day fermentation period of a conventional kombucha-making process. Our findings revealed similarities between the microbial communities in the early (0-2 days) and late (10-12 days) fermentation periods, supporting the principle of back-slopping fermentation. Untargeted metabolite analysis unveiled the presence of harmful biogenic amines in the produced kombucha, with concentrations increasing progressively throughout fermentation, albeit showing relatively lower abundance on days 8 and 12. Additionally, a contrasting trend between ethanol and caffeine content was observed. Canonical correspondence analysis highlighted strong positive correlations between specific bacterial/yeast strains and identified metabolites. In conclusion, our study sheds light on the microbial and metabolite dynamics of kombucha fermentation, emphasizing the importance of microbial control and quality assurance measures in the production process.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links