Displaying all 5 publications

Abstract:
Sort:
  1. Diederich S, Maisner A
    Ann N Y Acad Sci, 2007 Apr;1102:39-50.
    PMID: 17470910
    Nipah virus (NiV) is a highly pathogenic paramyxovirus, which emerged in 1998 from fruit bats in Malaysia and caused an outbreak of severe respiratory disease in pigs and fatal encephalitis in humans with high mortality rates. In contrast to most paramyxoviruses, NiV can infect a large variety of mammalian species. Due to this broad host range, its zoonotic potential, its high pathogenicity for humans, and the lack of effective vaccines or therapeutics, NiV was classified as a biosafety level 4 pathogen. This article provides an overview of the molecular characteristics of NiV focusing on the structure, functions, and unique biological properties of the two NiV surface glycoproteins, the receptor-binding G protein, and the fusion protein F. Since viral glycoproteins are major determinants for cell tropism and virus spread, a detailed knowledge of these proteins can help to understand the molecular basis of viral pathogenicity.
  2. Maisner A, Neufeld J, Weingartl H
    Thromb. Haemost., 2009 Dec;102(6):1014-23.
    PMID: 19967130 DOI: 10.1160/TH09-05-0310
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that was first isolated in 1999 during an outbreak in Malaysia. In contrast to other paramyxoviruses NiV infects many mammalian species. Because of its zoonotic potential, the high pathogenicity and the lack of therapeutic treatment, NiV was classified as a biosafety level 4 pathogen. In humans NiV causes a severe acute encephalitis whereas in some animal hosts respiratory symptoms are predominantly observed. Despite the differences in the clinical outcome, microvascular endothelial cell damage predominantly underlies the pathological changes in NiV infections in all susceptible host species. NiV generally induces a pronounced vasculitis which is primarily characterised by endothelial cell necrosis and inflammatory cell infiltration. For future developments of specific antiviral therapies or vaccines, a detailed understanding of the molecular basis of NiV pathogenesis is required. This article reviews the current knowledge about natural and experimental infections in different mammals, focusing on the main organ and cell tropism in vivo, and summarises some recent studies in cell culture on the role of ephrin-B2 and -B3 receptors in NiV infection of endothelial cells.
  3. Elvert M, Sauerhering L, Maisner A
    J Infect Dis, 2020 05 11;221(Suppl 4):S395-S400.
    PMID: 31665348 DOI: 10.1093/infdis/jiz455
    During the Nipah virus (NiV) outbreak in Malaysia, pigs and humans were infected. While pigs generally developed severe respiratory disease due to effective virus replication and associated inflammation processes in porcine airways, respiratory symptoms in humans were rare and less severe. To elucidate the reasons for the species-specific differences in NiV airway infections, we compared the cytokine responses as a first reaction to NiV in primary porcine and human bronchial epithelial cells (PBEpC and HBEpC, respectively). In both cell types, NiV infection resulted in the expression of type III interferons (IFN-λ). Upon infection with similar virus doses, viral RNA load and IFN expression were substantially higher in HBEpC. Even if PBEpC expressed the same viral RNA amounts as NiV-infected HBEpC, the porcine cells showed reduced IFN- and IFN-dependent antiviral gene expression. Despite this inherently limited IFN response, the expression of proinflammatory cytokines (IL-6, IL-8) in NiV-infected PBEpC was not decreased. The downregulation of antiviral activity in the presence of a functional proinflammatory cytokine response might be one of the species-specific factors contributing to efficient virus replication and acute inflammation in the lungs of pigs infected with the Malaysian NiV strain.
  4. Elvert M, Sauerhering L, Heiner A, Maisner A
    Methods Mol Biol, 2023;2682:103-120.
    PMID: 37610577 DOI: 10.1007/978-1-0716-3283-3_8
    The Malaysian strain of Nipah virus (NiV) first emerged in 1998/99 and caused a major disease outbreak in pigs and humans. While humans developed fatal encephalitis due to a prominent infection of brain microvessels, NiV-infected pigs mostly suffered from an acute respiratory disease and efficiently spread the infection via airway secretions. To elucidate the molecular basis of the highly productive NiV replication in porcine airways in vitro, physiologically relevant cell models that have maintained functional characteristics of airway epithelia in vivo are needed. Here, we describe in detail the method of isolating bronchial epithelial cells (PBEpC) from pig lungs that can be used for NiV infection studies. After the dissection of primary bronchia and removal of the mucus and protease digestion, bronchi segments are cut open and epithelial cells are scraped off and seeded on collagen-coated cell culture flasks. With this method, it is possible to isolate about 2 × 106 primary cells from the primary bronchi of one pig lung which can be cryopreserved or further subcultured. PBEpC form polarized monolayers on Transwell membrane inserts as controlled by immunostainings of epithelial marker proteins. NiV infection causes rapid formation of syncytia, allowing productive NiV infections in living PBEpC cultures to be monitored by phase-contrast microscopy.
  5. Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, et al.
    J Virol, 2016 Mar;90(5):2514-22.
    PMID: 26676785 DOI: 10.1128/JVI.02920-15
    Nipah virus (NiV) causes fatal encephalitic infections in humans. To characterize the role of the matrix (M) protein in the viral life cycle, we generated a reverse genetics system based on NiV strain Malaysia. Using an enhanced green fluorescent protein (eGFP)-expressing M protein-deleted NiV, we observed a slightly increased cell-cell fusion, slow replication kinetics, and significantly reduced peak titers compared to the parental virus. While increased amounts of viral proteins were found in the supernatant of cells infected with M-deleted NiV, the infectivity-to-particle ratio was more than 100-fold reduced, and the particles were less thermostable and of more irregular morphology. Taken together, our data demonstrate that the M protein is not absolutely required for the production of cell-free NiV but is necessary for proper assembly and release of stable infectious NiV particles.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links